В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
smchnc2004
smchnc2004
06.09.2020 12:34 •  Алгебра

найти пределы функций
быстрее !


найти пределы функций быстрее !

Показать ответ
Ответ:
dronyuk88
dronyuk88
07.07.2021 22:47
b_n = b_1q^{n-1}, b_n^2 = b_1^2 (q^2)^{n-1}, b_n^3 = b_1^3 (q^3)^{n-1}

Для суммы бесконечно убывающей геометрической прогрессии справедлива формула:

S = \frac{b_1}{1 -q}

Значит для второй и третьей последовательности (квадратов и кубов) справедливо:

S_1 = \frac{b_1^2}{1 -q^2}, S_2 = \frac{b_1^3}{1 - q^3}

Нам известно, что:

\frac{S_2}{S_1} = \frac{20}{21} = \frac{\frac{b_1^3}{1 -q^3} }{\frac{b_1^2}{1 -q^2}} = b1\frac{1 - q^2}{1 - q^3}

И известно:

b1 + b1q = 1,25 = b1(1 + q)

Получаем:

b1\frac{1 - q^2}{1 - q^3} = b1\frac{(1 - q)(1 + q)}{1 - q^3} = \{b1(1 + q) = 1,25\} = 1,25 \frac{1 + q}{1 - q^3} = \frac{20}{21}

\frac{5}{4} \frac{1 - q}{1 - q^3} = \frac{20}{21}

\frac{1 - q}{1 - q^3} = \frac{16}{21}

Получаем уравнение

16q^3 - 21q + 5 = 0

Перебором делителей свободного члена находим, что корнем является q = 1 (который, нам, однако, не подходит, поскольку |q| должен быть меньше 1 т.к. прогрессия бесконечно убывает) и поделив на q - 1 получаем:

16q^2 + 16q - 5 = 0


Находя корни квадратного уравнения, получаем:

q_1 = \frac{1}{4}, q_2 = -\frac{5}{4}

Из которых (по причине, описанной ранее) подходит только 1/4.

Дальше из условия b1(1 + q) = 1,25 находим, что b_1 = 1, а третий член равен b1q^2 = (\frac{1}{4})^2 = \frac{1}{16}
0,0(0 оценок)
Ответ:
Zomka1
Zomka1
28.01.2022 05:14

sin²(π/8 + t) = sint + sin²(π/8 - t)

sin²x = (1 - cos2x)/2

(1 - cos(π/4 + 2t))/2 = sint + (1 - cos(π/4 - 2t))/2

cos(α + β) = cosα•cosβ - sinα•sinβ - косинус суммыcos(α - β) = cosα•cosβ + sinα•sinβ - косинус разности

1 - ( (√2/2)•cos2t - (√2/2)•sin2t ) = 2sint + 1 - ( (√2/2)•cos2t + (√2/2)•sin2t )

1 - (√2/2)•cos2t + (√2/2)•sin2t = 2sint + 1 - (√2/2)•cos2t - (√2/2)•sin2t

2sint - √2sin2t = 0

sin2x = 2•sinx•cosx - синус двойного аргумента

2sint - 2√2•sint•cost = 0

2sint•( 1 - √2•cost) = 0

sint = 0 ⇔ t = πn, n ∈ Z1 - √2•cost = 0 ⇔ cost = 1/√2 ⇔ t = ± π/4 + 2πk, k ∈ Z

ответ: πn, n ∈ Z ; ± π/4 + 2πk, k ∈ Z

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота