18х³√х
Объяснение:
f(x)=4x⁴•√x
f'(x) = (4x⁴•√x)' = 4 • (x⁴•√x) =
= 4 • ( (x⁴)'•√x + x⁴•(√x)' ) =
= 4 • ( 4х³•√x + x⁴•1 / (2•√х) )=
= 4 • ( 4х³√х + 0,5х³√х ) =
= 4 • 4,5 х³√х =
= 18х³√х
f(x)=4x⁴√x = 4 • x⁴ • x^(1/2) =
= 4 • x^ (4+1/2) = 4 • x^(4,5)
f'(x) = ( 4 • x^(4,5) )' = 4 ( x^(4,5) )' =
= 4 • 4,5 • x^(4,5-1) = 4•4,5•x^(3,5)=
=18•x^(3+0,5)=18•x^(3)•x^(0,5)=18x³√x
18х³√х
Объяснение:
f(x)=4x⁴•√x
:f'(x) = (4x⁴•√x)' = 4 • (x⁴•√x) =
= 4 • ( (x⁴)'•√x + x⁴•(√x)' ) =
= 4 • ( 4х³•√x + x⁴•1 / (2•√х) )=
= 4 • ( 4х³√х + 0,5х³√х ) =
= 4 • 4,5 х³√х =
= 18х³√х
:f(x)=4x⁴√x = 4 • x⁴ • x^(1/2) =
= 4 • x^ (4+1/2) = 4 • x^(4,5)
f'(x) = ( 4 • x^(4,5) )' = 4 ( x^(4,5) )' =
= 4 • 4,5 • x^(4,5-1) = 4•4,5•x^(3,5)=
=18•x^(3+0,5)=18•x^(3)•x^(0,5)=18x³√x