Решение 1) y =x^3+x-6 y=x^3 Находим производную по формуле степенной функции x∧n = n*x∧(n-1) получаем: 3х∧2 производная от х равна 1 Производная от 6 как от постоянной равна 0 Получаем производную от данной функции: 3х∧2 + 1 2) y= -1/x^3+1/x+1 Вначале преобразуем нашу функцию: у = - х∧(- 3) + х∧(- 1) + 1 Находим производную от ( - х∧(- 3)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: -3х∧(-3+1) =-3х∧(-4) = - 3/х∧4 Находим производную от(х∧(- 1)) по формуле степенной функции x∧n = n*x∧(n-1) получаем: - х∧(-2) = -1/√х Производная от1 как от постоянной равна 0 Получаем производную от данной функции: - 3/х∧4 + -1/√х
1) y =x^3+x-6
y=x^3 Находим производную по формуле степенной функции
x∧n = n*x∧(n-1)
получаем: 3х∧2
производная от х равна 1
Производная от 6 как от постоянной равна 0
Получаем производную от данной функции:
3х∧2 + 1
2) y= -1/x^3+1/x+1
Вначале преобразуем нашу функцию:
у = - х∧(- 3) + х∧(- 1) + 1
Находим производную от ( - х∧(- 3)) по формуле степенной функции
x∧n = n*x∧(n-1)
получаем: -3х∧(-3+1) =-3х∧(-4) = - 3/х∧4
Находим производную от(х∧(- 1)) по формуле степенной функции
x∧n = n*x∧(n-1)
получаем: - х∧(-2) = -1/√х
Производная от1 как от постоянной равна 0
Получаем производную от данной функции:
- 3/х∧4 + -1/√х
x² +px +q =0 .
По условию p, q ∈ Q ( Q -множество рациональных чисел).
По теореме Виета : { x₁ +x₂ = - p ; x₁ *x₂ =q ⇔{ p = -(x₁ +x₂) ; q =x₁ *x₂.
* * * для того, чтобы p, q были рациональными корни должны иметь вид : x₁ =a +√b ; x₂ =a -√b , √b -иррациональное число * * *
---
а)
x₂ = √3 ⇒ x₂ = -√3.
p = -( x₁ +x₂) =0 ;
q =x₁ *x₂ =√3 *(-√3) = -3 .
x² -3 = 0 .
---
б)
x₁ = -1+√3⇒x₂ = -1-√3 . || иначе x₂ = -(√3+1) ||
p = -(x₁+x₂) = - ( ( -1+√3)+( -1-√3) )=2 ;
q =x₁ *x₂ = (√3-1)* (-(√3 +1) ) = -((√3) ² -1)= -(3-1) =-2 .
x² +2x -2 = 0 .
---
в)
x₁ = 2-√5 ⇒x₂ =2+√5
p= -(x₁+x₂) = - ( 2-√5+2+√5 )= -4 ;
q =x₁ *x₂ = ( 2-√5)*(2+√5) =2² -(√5)² =4-5 = -1 .
x² -4x -1 =0 .