Пишу ход своих мыслей: Если скорость одного велосипедиста больше на 3 км/ч., но известно, что один велосипедист преодолевает этот путь на один час быстрее, тогда: 1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже. 2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее. 3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее 4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
1) D(f) ∈ (-∞; +∞) 2) E(f) ∈ (-∞; +∞) 3) Нули функции: x³ - 3x + 2 = 0 (x-1)²(x+2) = 0 x = -2 x = 1 f(x) = 0 при x = -2; 1 4) Функция больше/меньше 0. Определяется с метода интервалов. f(x) > 0 при x ∈ (-2; 1) ∪ (1; +∞) f(x) < 0 при x ∈ (-∞; -2) 5) Возрастание/убывание функции Найдём производную, приравняем к нулю, после определим знаки с метода интервалов. f'(x) = 3x² - 3 3x² - 3 = 0 3(x² - 1) = 0 x = 1 x = -1 f возрастает при x ∈ (-∞; -1) ∪ (1; +∞) f убывает при x ∈ (-1; 1) 6) Точек максимума и минимума нет.
1) 36:4=9 км/ч - скорость велосипедиста преодолевшего путь на 1 час позже.
2) 9+3=12 км/ч -скорость велосипедиста преодолевшего путь на 1 час быстрее.
3) 36:12=3 ч. время велосипедиста преодолевшего путь на 1 час быстрее
4) 36:9=4 ч. время велосипедиста преодолевшего путь на 1 час позже
ответ: 9 км/ч скорость первого велосипедиста, 12 км/ч скорость второго велосипедиста.
f'(x) = 1/4 * (cosxsinx + sinxcosx) = 1/4 * sin(2x)
f(x) = x³ - 3x + 2
1) D(f) ∈ (-∞; +∞)
2) E(f) ∈ (-∞; +∞)
3) Нули функции:
x³ - 3x + 2 = 0
(x-1)²(x+2) = 0
x = -2
x = 1
f(x) = 0 при x = -2; 1
4) Функция больше/меньше 0.
Определяется с метода интервалов.
f(x) > 0 при x ∈ (-2; 1) ∪ (1; +∞)
f(x) < 0 при x ∈ (-∞; -2)
5) Возрастание/убывание функции
Найдём производную, приравняем к нулю, после определим знаки с метода интервалов.
f'(x) = 3x² - 3
3x² - 3 = 0
3(x² - 1) = 0
x = 1
x = -1
f возрастает при x ∈ (-∞; -1) ∪ (1; +∞)
f убывает при x ∈ (-1; 1)
6) Точек максимума и минимума нет.