В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Vlaad555
Vlaad555
29.12.2020 00:18 •  Алгебра

Найти все принадлежащие отрезку [0 ; 2,5п]корни уравнения cosx=-√3/ 2 с двойного неравенства.

Показать ответ
Ответ:
Andrey21vek
Andrey21vek
09.10.2020 04:37

\frac{5\pi }{6} ; \frac{7\pi }{6} .

Объяснение:

cosx =-\frac{\sqrt{3} }{2} ;\\\\x= \pm arccos (- \frac{\sqrt{3} }{2} ) +2\pi k, ~k\in\mathbb {Z};\\\\x=\pm \frac{5\pi }{6} +2\pi k, ~k\in\mathbb {Z};

Выберем корни уравнения . принадлежащие отрезку [ 0; 2,5\pi ]

0\leq \pm \frac{5\pi }{6} +2\pi k\leq \frac{5\pi }{2}|: \pi , ~k\in\mathbb {Z}\\\\0\leq \pm \frac{5}{6} +2k \leq \frac{5}{2} ,~k\in\mathbb {Z}

1)

\ 0\leq \frac{5}{6} +2k \leq \frac{5}{2} ;\\\\-\frac{5}{6} \leq 2k \leq \frac{5}{2} -\frac{5}{6};\\\\\- -\frac{5}{6} \leq 2k \leq \frac{5}{3} ;\\\\-\frac{5}{12} \leq k \leq \frac{5}{6} .

т.к. ~k\in\mathbb {Z} , то данному неравенству удовлетворяет  k=0

k= 0 , x = \frac{5\pi }{6}

2)

\ 0\leq -\frac{5}{6} +2k \leq \frac{5}{2} ;\\\\\frac{5}{6} \leq 2k \leq \frac{5}{2} +\frac{5}{6};\\\\\-\frac{5}{6} \leq 2k \leq \frac{10}{3} ;\\\\\frac{5}{12} \leq k \leq \frac{5}{3} .

данному неравенству удовлетворяет k=1

k=1, x= -\frac{5\pi }{6} +2\pi = \frac{-5\pi +12\pi }{6} = \frac{7\pi }{6} .

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота