2) подставляем во 2 уравнение вместо х получившееся:
3* (5у-30)\2- 8у+52=0
подгоняем все под знаменатель 2:
(15у-90-16у+104)\2=0
дробь рана 0, когда ее числитель равен 0, а знаменатель не равен. значит отбрасываем знаменатель. НО. на 0 делить нельзя, значит нельзя, чтобы в знаменателе получился 0. но тут нас устроят любые значения у, тк у нет в знаменателе. решаем:
1) Положим что 7 это один из катетов, тогда 5 либо второй катет (высота) или высота проведенная к гипотенузе, пусть 5 это высота к гипотенузе и b второй катет, тогда высота равна 7b/√(b^2+49)=5 , откуда b=35/√24 то есть такой катет существует, значит для первого случая возможны два варианта , это треугольники (катет,катет,гипотенуза)=(5,7,√74) и (7,35/√24,49/√24)
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49 ab=35 a^2+b^2=49
a=35/b откуда b^4-49b^2+1225=0 D<0 то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.
1) выразим х из 1 уравнения:
х= (5у-30)\2
2) подставляем во 2 уравнение вместо х получившееся:
3* (5у-30)\2- 8у+52=0
подгоняем все под знаменатель 2:
(15у-90-16у+104)\2=0
дробь рана 0, когда ее числитель равен 0, а знаменатель не равен. значит отбрасываем знаменатель. НО. на 0 делить нельзя, значит нельзя, чтобы в знаменателе получился 0. но тут нас устроят любые значения у, тк у нет в знаменателе. решаем:
-у+14=0
у=14.
3) подставляем вместо у 14 в 1 уравнение:
2х-70= -30
2х= 40
х=20
ответ: 20, 14
Объяснение:
2) Пусть 7 это гипотенуза, тогда 5 может быть одним из катетов, тогда второй катет равен √(49-25)=√24 (существует) или высота проведенная к гипотенузе, пусть a,b тогда катеты , откуда ab/7=5 и a^2+b^2=49
ab=35
a^2+b^2=49
a=35/b
откуда b^4-49b^2+1225=0
D<0
то есть не существует такого треугольника
Значит существуют всего в сумме 3 различных прямоугольных треугольника с требуемыми условиями.