Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором . С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения , два произвольных числа, но . Пусть мы имеем функцию , тогда вычисляем значения функции в этих двух точках, имеем и , так вот, если , тогда функция возрастающая, если же , то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1), т.е. функция возрастающая. А вот задание с не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) . Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): , функция возрастает, что и требовалось доказать.
1) если подмодульное выражение неотрицательно, то модуль этого выражения равен самому выражению.
|x-3|-3≥0 Уравнение примет вид: |x-3|-3=3-|3-х| или 2|x-3|=6 (|x-3|=|3-х|- модули противоположных выражений равны) |x-3|=3 х-3=3 или х-3=-3 х=6 или х=0 х=6 и х=0 являются корнями уравнения, так как удовлетворяют неравенству |x-3|-3≥0
2) |x-3|-3<0
Уравнение примет вид: -|x-3|+3=3-|3-х| или |x-3|=|3-х| - равенство верно при любом х. Корнем уравнения являются те х, которые удовлетворяют неравенству |x-3|-3<0 или |x-3|<3 -3<x-3<3 0<x<6
|x-3|-3≥0
Уравнение примет вид:
|x-3|-3=3-|3-х|
или
2|x-3|=6 (|x-3|=|3-х|- модули противоположных выражений равны)
|x-3|=3
х-3=3 или х-3=-3
х=6 или х=0
х=6 и х=0 являются корнями уравнения, так как удовлетворяют неравенству
|x-3|-3≥0
2)
|x-3|-3<0
Уравнение примет вид:
-|x-3|+3=3-|3-х|
или
|x-3|=|3-х| - равенство верно при любом х.
Корнем уравнения являются те х, которые удовлетворяют неравенству
|x-3|-3<0
или
|x-3|<3
-3<x-3<3
0<x<6
ответ. х=0; х=6; 0<x<6 или 0≤х≤6 или х∈[0;6]