В связи с тем, что разница во времени всего 2 часа, понятно, что количество рабочих небольшое и проще решить подбором, взяв 2-3 варианта, чем искать строгое решение через уравнения и прочие выкладки. Пусть за 1 час 1 рабочий делает n деталей. Проверим сразу 5 человек (3 и 4 я уже проверил и откинул, на каждый вариант 1 минута)
1-й час - n деталей 2-й час - 2n деталей 3-й час - 3n деталей 4-й час - 4n деталей Итого сделали в неполном составе n+2n+3n+4n=10n деталей. Дальше работают в полном составе. С самого начала полный состав за эти же первые 4 часа сделает 5*n*4=20n деталей. Разница 10n деталей, что составляет 2 часа полного состава. Подходит. Итого бригада 5 человек.
Дана функция f(x) = x³ - 3x² + 12. График функции пересекает ось X при f = 0 значит надо решить уравнение: x³ - 3 x² + 12 = 0. Решаем это уравнение Точки пересечения с осью X: Аналитическое решение даёт 2 комплексных и один действительный корень:
Численное решение x_{1} = -1,6128878.
График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^3 - 3*x^2 + 12. 0^{3} - 0 + 12. Результат: f(0) = 12. Точка: (0, 12).
Для того, чтобы найти экстремумы, нужно решить уравнение {d}{dx} f(x) = 0. (производная равна нулю), и корни этого уравнения будут экстремумами данной функции: $$\frac{d}{d x} f{\left (x \right )} = $$ Первая производная 3x² - 6x = 0 или 3х(х - 2) = 0. Решаем это уравнение. Корни этого уравнения: x_{1} = 0. x_{2} = 2. Значит, экстремумы в точках: (0, 12) (2, 8)
Интервалы возрастания и убывания функции: Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума: Минимумы функции в точках: x_{2} = 2. Максимумы функции в точках: x_{2} = 0. Убывает на промежутках (-oo, 0] U [2, oo). Возрастает на промежутках [0, 2].
Найдем точки перегибов, для этого надо решить уравнение {d^{2}}{d x^{2}} f(x ) = 0, (вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции: {d^{2}}{d x^{2}} f(x) = 6х - 6. Вторая производная 6(х - 1) = 0. Решаем это уравнение. Корни этого уравнения x_{1} = 1.
Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: вогнутая на промежутках [1, oo), выпуклая на промежутках (-oo, 1].
Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo \lim_{x \to -\infty}\left(x^{3} - 3 x^{2} + 12\right) = -∞. Значит, горизонтальной асимптоты слева не существует. \lim_{x \to \infty}\left(x^{3} - 3 x^{2} + 12\right) = ∞. Значит, горизонтальной асимптоты справа не существует.
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 3*x^2 + 12, делённой на x при x->+oo и x ->-oo $$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞. Значит, наклонной асимптоты слева не существует. \lim_{x \to \infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞. Значит, наклонной асимптоты справа не существует.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: \^{3} - 3 x^{2} + 12 = - x^{3} - 3 x^{2} + 12 - Нет. x^{3} - 3 x^{2} + 12 = - -1 x^{3} - - 3 x^{2} - 12 - Нет. значит, функция не является ни чётной, ни нечётной.
Пусть за 1 час 1 рабочий делает n деталей.
Проверим сразу 5 человек (3 и 4 я уже проверил и откинул, на каждый вариант 1 минута)
1-й час - n деталей
2-й час - 2n деталей
3-й час - 3n деталей
4-й час - 4n деталей
Итого сделали в неполном составе n+2n+3n+4n=10n деталей.
Дальше работают в полном составе.
С самого начала полный состав за эти же первые 4 часа сделает 5*n*4=20n деталей.
Разница 10n деталей, что составляет 2 часа полного состава.
Подходит.
Итого бригада 5 человек.
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x³ - 3 x² + 12 = 0.
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение даёт 2 комплексных и один действительный корень:
Численное решение
x_{1} = -1,6128878.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 3*x^2 + 12.
0^{3} - 0 + 12.
Результат:
f(0) = 12.
Точка:
(0, 12).
Для того, чтобы найти экстремумы, нужно решить уравнение
{d}{dx} f(x) = 0. (производная равна нулю), и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
3x² - 6x = 0 или 3х(х - 2) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = 0.
x_{2} = 2.
Значит, экстремумы в точках:
(0, 12)
(2, 8)
Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x_{2} = 2.
Максимумы функции в точках:
x_{2} = 0.
Убывает на промежутках (-oo, 0] U [2, oo).
Возрастает на промежутках [0, 2].
Найдем точки перегибов, для этого надо решить уравнение
{d^{2}}{d x^{2}} f(x ) = 0, (вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции: {d^{2}}{d x^{2}} f(x) = 6х - 6.
Вторая производная 6(х - 1) = 0.
Решаем это уравнение.
Корни этого уравнения x_{1} = 1.
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
вогнутая на промежутках [1, oo),
выпуклая на промежутках (-oo, 1].
Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo
\lim_{x \to -\infty}\left(x^{3} - 3 x^{2} + 12\right) = -∞.
Значит, горизонтальной асимптоты слева не существует.
\lim_{x \to \infty}\left(x^{3} - 3 x^{2} + 12\right) = ∞.
Значит, горизонтальной асимптоты справа не существует.
Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 3*x^2 + 12, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞.
Значит, наклонной асимптоты слева не существует.
\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞.
Значит, наклонной асимптоты справа не существует.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
\^{3} - 3 x^{2} + 12 = - x^{3} - 3 x^{2} + 12
- Нет.
x^{3} - 3 x^{2} + 12 = - -1 x^{3} - - 3 x^{2} - 12
- Нет.
значит, функция не является ни чётной, ни нечётной.
График дан в приложении.