1) Расчет длин сторон: АВ = √((Хв-Ха)²+(Ув-Уа)²) = 2 BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.828427125 AC = √((Хc-Хa)²+(Ус-Уa)²) = 4.472135955. Периметр равен 9.30056. 2) Получив длины сторон, по теореме косинусов находим углы треугольника: Внутренние углы по теореме косинусов: cos A= АВ²+АС²-ВС² / 2*АВ*АС = 0.894427 A = 0.463648 радиан, A = 26.56505 градусов. cos В= АВ²+ВС²-АС² / 2*АВ*ВС = -0.707107, B = 2.356194 радиан, B = 135 градусов. cos C= АC²+ВС²-АВ² / 2*АC*ВС = 0.94868, C = 0.321751 радиан, C = 18.43495 градусов. 3) Уравнения высоты АА₂ в виде у = к* х + в: у = -х + 3. АА₂: (Х-Ха) / (Ус-Ув) = (У-Уа) / (Хв-Хс). АА₂: 2 Х + 2 У - 6 = 0 или, сократив на 2,: Х + У - 3 = 0. Уравнение высоты ВВ₂: (Х-Хв) / (Ус-Уа ) = (У-Ув) / (Ха-Хс) 4 Х + 2 У + 0 = 0 или 2Х + У = 0. у = -2х + 0 или у = -2х. Уравнение высоты СС₂: (Х-Хс)/(Ув-Уа) = (У-У) / (Ха-Хв) 2 Х + 0 У + 6 = 0 или, сократив на 2,: Х + 3 = 0. Эта высота совпадает с осью У. 4) Точка пересечения медиан: x0 = (x1 + x2 + x3)/3 = (1+(-1)+(-3)) / 3 = -1. y0 = (y1 + y2 + y3)/3 = (2+2+0) / 3 = 4 / 3 = 1,3333. 5) Уравнение биссектрисы АА₃: АА₃= (((Ув-Уа)/АВ) + (Ус-Уа)/АС ) * Х + (((Ха-Хв)/АВ) + (Ха-Хс)/АС) ) * У + (((Хв*Уа - Ха*Ув)/АВ) + (Хс*Уа - Ха*Ус)/АС) ) = 0. Подставив значения, получаем: -0.4472 Х + 1.89443 У - 3.34164 = 0, или разделив на коэффициент перед х: Х - 4.23607 У + 7.47214 = 0. Уравнение в виде ах + в: у = 0.236067977 х + 1.763932. Уравнение биссектрисы ВВ₃: ВВ₃= -0.7071 Х - 0.29289 У - 0.12132 = 0 или Х + 0.41421 У + 0.17157 = 0. Уравнение в виде ах + в: у = -2.414213562 х - 0.414214. Уравнение биссектрисы СС₃: СС₃= 1.15432 Х -1.60153 У + 3.46296 = 0 или Х - 1.38743 У + 3 = 0. 6) Площадь треугольника: S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 2.
(1/4)х² = 5х - 16.
(1/4)х² - 5х + 16 = 0.
Решаем уравнение 0.25*x^2-5*x+16=0:
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-5)^2-4*0.25*16=25-4*0.25*16=25-16=9;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(2root9-(-5))/(2*0.25)=(3-(-5))/(2*0.25)=(3+5)/(2*0.25)=8/(2*0.25)=8/0.5=16;
x_2=(-2root9-(-5))/(2*0.25)=(-3-(-5))/(2*0.25)=(-3+5)/(2*0.25)=2/(2*0.25)=2/0.5=4.
Есть 2 точки пересечения:
х1 = 4 у1 = 5*4 - 16 = 20 - 16 = 4.
х2 = 16 у2 = 5*16 - 16 = 80 - 16 = 64.
АВ = √((Хв-Ха)²+(Ув-Уа)²) = 2
BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.828427125
AC = √((Хc-Хa)²+(Ус-Уa)²) = 4.472135955.
Периметр равен 9.30056.
2) Получив длины сторон, по теореме косинусов находим углы треугольника:
Внутренние углы по теореме косинусов:
cos A= АВ²+АС²-ВС² / 2*АВ*АС = 0.894427
A = 0.463648 радиан, A = 26.56505 градусов.
cos В= АВ²+ВС²-АС² / 2*АВ*ВС = -0.707107,
B = 2.356194 радиан, B = 135 градусов.
cos C= АC²+ВС²-АВ² / 2*АC*ВС = 0.94868,
C = 0.321751 радиан, C = 18.43495 градусов.
3) Уравнения высоты АА₂ в виде у = к* х + в: у = -х + 3.
АА₂: (Х-Ха) / (Ус-Ув) = (У-Уа) / (Хв-Хс).
АА₂: 2 Х + 2 У - 6 = 0 или, сократив на 2,: Х + У - 3 = 0.
Уравнение высоты ВВ₂: (Х-Хв) / (Ус-Уа ) = (У-Ув) / (Ха-Хс)
4 Х + 2 У + 0 = 0 или 2Х + У = 0.
у = -2х + 0 или у = -2х.
Уравнение высоты СС₂: (Х-Хс)/(Ув-Уа) = (У-У) / (Ха-Хв)
2 Х + 0 У + 6 = 0 или, сократив на 2,: Х + 3 = 0.
Эта высота совпадает с осью У.
4) Точка пересечения медиан:
x0 = (x1 + x2 + x3)/3 = (1+(-1)+(-3)) / 3 = -1.
y0 = (y1 + y2 + y3)/3 = (2+2+0) / 3 = 4 / 3 = 1,3333.
5) Уравнение биссектрисы АА₃:
АА₃= (((Ув-Уа)/АВ) + (Ус-Уа)/АС ) * Х + (((Ха-Хв)/АВ) + (Ха-Хс)/АС) ) * У + (((Хв*Уа - Ха*Ув)/АВ) + (Хс*Уа - Ха*Ус)/АС) ) = 0.
Подставив значения, получаем:
-0.4472 Х + 1.89443 У - 3.34164 = 0, или разделив на коэффициент перед х: Х - 4.23607 У + 7.47214 = 0.
Уравнение в виде ах + в:
у = 0.236067977 х + 1.763932.
Уравнение биссектрисы ВВ₃:
ВВ₃= -0.7071 Х - 0.29289 У - 0.12132 = 0
или Х + 0.41421 У + 0.17157 = 0.
Уравнение в виде ах + в:
у = -2.414213562 х - 0.414214.
Уравнение биссектрисы СС₃:
СС₃= 1.15432 Х -1.60153 У + 3.46296 = 0
или Х - 1.38743 У + 3 = 0.
6) Площадь треугольника:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 2.