Данная зависимость является функцией, потому что это определенный закон, согласно которому каждому элементу одного множества ставится в соответствие элемент другого. В нашем случае Y зависит от значений X
Область определения х∈(-∞;+∞) , т.к. графиком этой функции будет парабола ветвями вверх. Область значений найдем определив вершину параболы. Абсцисса вершины равна -b/2a=-6/2=-3. Ордината вершины равна (-3)^2+6(-3)+12=9-18+12=3. Значит вершина находится в точке (-3;3) и т.к. парабола ветвями вверх значит область значений y∈[3;+∞).
ответ на последний вопрос в решении уравнения 3=x^2+6x+12; если решение есть, то ответ утвердительный. x^2+6x+9=0; D=36-4*9=0; x=-6/2=-3
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
Область определения х∈(-∞;+∞) , т.к. графиком этой функции будет парабола ветвями вверх. Область значений найдем определив вершину параболы. Абсцисса вершины равна -b/2a=-6/2=-3. Ордината вершины равна (-3)^2+6(-3)+12=9-18+12=3. Значит вершина находится в точке (-3;3) и т.к. парабола ветвями вверх значит область значений y∈[3;+∞).
ответ на последний вопрос в решении уравнения 3=x^2+6x+12; если решение есть, то ответ утвердительный. x^2+6x+9=0; D=36-4*9=0; x=-6/2=-3
x^4-4x^2=0
х1=0; х2=2; х3=-2;
Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0
f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0
Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2)
теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум
-2^0.5 0 2^0.5
---*---о*о*---о*--
-2 -1 1 2
x=0 => y= 0
x=-2^0.5 => y= -4
x=2^0.5 => y= -4
x=-2 => y= 0
x=-1 => y=-3
x=1 => y=-3
x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум.
Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум.
Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено
Точки пересечения с осью Х
х1=0; х2=2; х3=-2;
Минимум
(-2^0.5;-4) и (2^0.5;-4)
Максимум
(0;0)