В случайном экспирименте игральный кубик бросают один раз.Найдите вероятность того,что выпадет число,меньшее чем 4. Решение:Чисел меньше 4:1,2,3.Возможных вариантов 6.Значит 3\6=0,5 ответ:Р=0,5
В соревнованиях по толканию ядра учавствуют 4 спортсмена из Финляндии,7 из Дании,9 из Швеции,5 из Норвегии.Порядок,в котором выступают спортсмены,определяется жребием.Найдите вероятность того,что спортсмен,который выступают последним,окажется из Швеции. Решение:Всего возможных случаев 25,а благоприятных 9(т.к. они из Швеции).Значит 9\25=0,36 ответ:0,36
Решение:Чисел меньше 4:1,2,3.Возможных вариантов 6.Значит 3\6=0,5
ответ:Р=0,5
В соревнованиях по толканию ядра учавствуют 4 спортсмена из Финляндии,7 из Дании,9 из Швеции,5 из Норвегии.Порядок,в котором выступают спортсмены,определяется жребием.Найдите вероятность того,что спортсмен,который выступают последним,окажется из Швеции.
Решение:Всего возможных случаев 25,а благоприятных 9(т.к. они из Швеции).Значит 9\25=0,36
ответ:0,36
-sin(5x) + sinX -2cos^2(x) =0 ==>
-2cos(3x)sin(2x) - 2cos^2(x) = 0 ==>
cos(3x)sin(2x) + cos^2(x) = 0 ==>
(4cos^3(x) - 3cos(x) )2sin(x)cos(x) + cos^2(x) = 0 ==>
8sin(x)cos^4(x) - 6sin(x)cos^2(x) + cos^2(x) = 0 ==>
cos^2(x) (8sin(x)cos^2(x) - 6sin(x) +1) = 0 ==>
cos^2(x) ( -8sin^3(x) + 2sin(x) + 1) = 0 ==>
сразу обратим внимание на корень x = pi/2 + pi*n; sin(x) = t;
-8t^3+2t+1 = 0 ==> t^3 - 1/4t -1/8 = 0; если данное уравнение имеет рациональные корни, то они принадлежат следующему мн-ву {+-1 , +-1/2 , +-1/4 , +- 1/8 } путём перебора находим, что рациональных корней сие уравнение не имеет.
Постулируем, что уравнение имеет только 1 вещественный корень. Дальше используйте формулу Кардано и найдите его.