Можно попробовать метод подбора, но тут все предельно просто. Нам даже не важно сколько шариков, куда важнее их разнообразие. Чтобы два шарика имели одинаковый цвет, нужно чтобы других вариантов не оставалось, то есть чтобы ты взял либо все цвета по отдельности, либо одного цвета. То есть представим ситуацию: берём шарик (белый), второй (красный), третий (зелёный), четвертый (синий), а пятый в любом случае будет либо белым, либо зелёным, либо синим. Также может повезти, но это мы не берём в расчет. Поэтому ответ 5. Если возьмём 4, то с малой вероятностью может произойти представленная мною ситуация (хоть и шанс мал, но он есть)
(x+5)⁴-13x²(x+5)²+36x⁴=0 Для возведения в степерь воспользуемся биноминальной формулой
x⁴+20x³+150x²+500x+625-13x⁴+130x³+325x²+36x⁴=0
24x⁴-110x³-175x²+500x+625=0 Разложим одночлены в сумму нескольких 24x⁴-110x³-275x²+100x²+500x+625=0 24x⁴-110x²(x+2.5)+100(x+2.5)²=0 Пусть x²=A, x+2.5=B, в результате 24A²-110AB+100B²=0 24A²-80AB-30AB+100B²=0 8A(3A-10B)-10B(3A-10B)=0 (3A-10B)(8A-10B)=0 Возвращаемся к замене (3x²-10(x+2.5))(8x²-10(x+2.5))=0 (3x²-10x-25)(8x²-10x-25)=0 Два уравнения 3x²-10x-25=0 D=b²-4ac=100+300=400 x₁=-5/3 x₂=5
8x²-10x-25=0 D=100+32*25=900 x₃=-1.25 x₄=2.5
ответ: -5/3; -1.25; 2.5; 5.
2(x-1)⁴-5(x²-3x+2)²+2(x-2)⁴=0 Биноминальна формула
Раскроем скобки по формуле 2x⁴-8x³+12x²-8x+2-5x⁴+30x³-65x²+60x-20+2x⁴-16x³+48x²-64x+32=0 x⁴-6x³+5x²+12x-14=0 Пусть x²-3x=t, в результате замены переменных получаем уравнение t²-4t-14=0 D=b²-4ac=16+4*14=72 t₁=2-3√2 t₂=2+3√2 Вовзращаемся к замене x²-3x=2-3√2 x²-3x-(2-3√2)=0 D=17-12√2; √D=3-2√2 x₁=√2 x₂=3-√2
5
Объяснение:
Можно попробовать метод подбора, но тут все предельно просто. Нам даже не важно сколько шариков, куда важнее их разнообразие. Чтобы два шарика имели одинаковый цвет, нужно чтобы других вариантов не оставалось, то есть чтобы ты взял либо все цвета по отдельности, либо одного цвета. То есть представим ситуацию: берём шарик (белый), второй (красный), третий (зелёный), четвертый (синий), а пятый в любом случае будет либо белым, либо зелёным, либо синим. Также может повезти, но это мы не берём в расчет. Поэтому ответ 5. Если возьмём 4, то с малой вероятностью может произойти представленная мною ситуация (хоть и шанс мал, но он есть)
Для возведения в степерь воспользуемся биноминальной формулой
x⁴+20x³+150x²+500x+625-13x⁴+130x³+325x²+36x⁴=0
24x⁴-110x³-175x²+500x+625=0
Разложим одночлены в сумму нескольких
24x⁴-110x³-275x²+100x²+500x+625=0
24x⁴-110x²(x+2.5)+100(x+2.5)²=0
Пусть x²=A, x+2.5=B, в результате
24A²-110AB+100B²=0
24A²-80AB-30AB+100B²=0
8A(3A-10B)-10B(3A-10B)=0
(3A-10B)(8A-10B)=0
Возвращаемся к замене
(3x²-10(x+2.5))(8x²-10(x+2.5))=0
(3x²-10x-25)(8x²-10x-25)=0
Два уравнения
3x²-10x-25=0
D=b²-4ac=100+300=400
x₁=-5/3
x₂=5
8x²-10x-25=0
D=100+32*25=900
x₃=-1.25
x₄=2.5
ответ: -5/3; -1.25; 2.5; 5.
2(x-1)⁴-5(x²-3x+2)²+2(x-2)⁴=0
Биноминальна формула
Раскроем скобки по формуле
2x⁴-8x³+12x²-8x+2-5x⁴+30x³-65x²+60x-20+2x⁴-16x³+48x²-64x+32=0
x⁴-6x³+5x²+12x-14=0
Пусть x²-3x=t, в результате замены переменных получаем уравнение
t²-4t-14=0
D=b²-4ac=16+4*14=72
t₁=2-3√2
t₂=2+3√2
Вовзращаемся к замене
x²-3x=2-3√2
x²-3x-(2-3√2)=0
D=17-12√2; √D=3-2√2
x₁=√2
x₂=3-√2
x²-3x=2+3√2
x²-3x-(2+3√2)=0
D=17+12√2; √D=3+2√2
x₃=-√2
x₄=3+√2
ответ: ±√2; 3±√2.