Пусть х (км/ч) скорость грузовика, тогда (х+20) км/ч - скорость легковой машины. Время, затраченное грузовиком: 480/х (ч), а время, затраченное легковой машиной: 480/(х+20) (ч). Составим уравнение.
480/х=480/(х+20)+2
480*(х+20)=480х+2х*(х+20)
480х+9600=480х+2х^2+40х
2х^2+40х-9600=0
Делим всё на 2
х^2+20х-4800=0
Находим дискриминант квадратного уравнения:
D=20^2-4*1*(-4800)=400+19200=19600
корень из 19600 равен 140
х1=(-20+140)/2=120/2=60
х2=(-20-140)/2=-80
Отрицательный корень отбрасываем.
60 км/ч -скорость грузовика
60+20=80 (км/ч) - скорость легковой машины.
ответ: скорость грузовика 60 км/ч, скорость легковой машины 80 км/ч.
||2^x+x-2|-1| > 2^x-x-1 Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты))) Помним о важном правиле: |x| =x, если x>=0 |x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу: {|2^x+x-2|-1 >2^x-x-1 {|2^x+x-2|-1> -2^x+x+1 Переносим "-1" из левой части в правую: {|2^x+x-2| > 2^x-x {|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу: {2^x+x-2>2^x-x {2x-2>0 {2^x+x-2>x-2^x {2*2^x-2>0 {2^x+x-2>-2^x+x+2 {2*2^x-4>0 {2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1 {2^x>1 {x>0 {2^x>2 {x>1 {x>0 {x>0
Решением неравенства является промежуток (1; + беск.)
Пусть х (км/ч) скорость грузовика, тогда (х+20) км/ч - скорость легковой машины. Время, затраченное грузовиком: 480/х (ч), а время, затраченное легковой машиной: 480/(х+20) (ч). Составим уравнение.
480/х=480/(х+20)+2
480*(х+20)=480х+2х*(х+20)
480х+9600=480х+2х^2+40х
2х^2+40х-9600=0
Делим всё на 2
х^2+20х-4800=0
Находим дискриминант квадратного уравнения:
D=20^2-4*1*(-4800)=400+19200=19600
корень из 19600 равен 140
х1=(-20+140)/2=120/2=60
х2=(-20-140)/2=-80
Отрицательный корень отбрасываем.
60 км/ч -скорость грузовика
60+20=80 (км/ч) - скорость легковой машины.
ответ: скорость грузовика 60 км/ч, скорость легковой машины 80 км/ч.
Раскрывать модули будем постепенно, снаружи, как будто снимая листья с кочана капусты)))
Помним о важном правиле:
|x| =x, если x>=0
|x|=-x, если x<0
Снимаем первый модуль и действуем согласно вышеупомянутому правилу:
{|2^x+x-2|-1 >2^x-x-1
{|2^x+x-2|-1> -2^x+x+1
Переносим "-1" из левой части в правую:
{|2^x+x-2| > 2^x-x
{|2^x+x-2| > -2^x+x+2
2) Снимаем второй модуль и также действуем согласно модульному правилу:
{2^x+x-2>2^x-x {2x-2>0
{2^x+x-2>x-2^x {2*2^x-2>0
{2^x+x-2>-2^x+x+2 {2*2^x-4>0
{2^x+x-2>2^x-x-2 {2x>0
{x>1 {x>1
{2^x>1 {x>0
{2^x>2 {x>1
{x>0 {x>0
Решением неравенства является промежуток (1; + беск.)