Модуль означает, что знак числа попросту отбрасывается. Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком). 1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак. х-4=0 → х=4. 2. Рассматриваем случай х<4 При этом выражение отрицательно, следовательно |x-4| = 4-x -3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6) 3. Рассматриваем случай x≥4 При этом выражение неотрицательно, поэтому |x-4| = х-4 -3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x) 4. Объединяя два эти выражения, получаем
1)y=√x+7
y=√-3+7
y=√4
y=2
2)x=1,21,y=c
C=√1,21
C=1,1
подставляем вместо x, число 4
3)y=5+√4+3
y=5+√7
Приблизительное значение
√7=2,6457
5+√7=7,6457
7,6457=7,64
4) наименьшее 10, наибольше 15,
X=9:y=√9+7=3+7=10
X=64:y=√64+7=8+7=15
5)-120,
y=16
16=5+√1-x
16-5=√1-x
11=√1-x
11²=(√1-x)²<---здесь мы возвели обе части в квадрат
121=1-x
-x=121-1
-x=120
x=-120
6)y≥7 или y €[7;+бесконечность]
Т.к a>b, тогда a+c>b+c, где c- любое число, мы прибавляем к обеим частям неравенства √x≥0 число 7
√x+7≥0+7
√x+7≥7
Следовательно ответ y≥7 или y €[7;+бесконечность]
Объяснение:
Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком).
1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак.
х-4=0 → х=4.
2. Рассматриваем случай х<4
При этом выражение отрицательно, следовательно |x-4| = 4-x
-3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6)
3. Рассматриваем случай x≥4
При этом выражение неотрицательно, поэтому |x-4| = х-4
-3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x)
4. Объединяя два эти выражения, получаем