Ветви параболы y = ax2 + bx + c будут направлены вверх, если a > 0, и вниз, если a < 0.
Осью симметрии параболы y = ax2 + bx + c является прямая x = – b/2a, координаты вершины параболы вычисляются по следующим формулам: x0 = – b/2a, y0 = f(x0).
Объяснение:
Ветви параболы y = ax2 + bx + c будут направлены вверх, если a > 0, и вниз, если a < 0.
Осью симметрии параболы y = ax2 + bx + c является прямая x = – b/2a, координаты вершины параболы вычисляются по следующим формулам: x0 = – b/2a, y0 = f(x0).
Объяснение: