Руслану нужно решить 420 задач. Ежедневно он решает на одно и то же количество задач больше по сравнению с предыдущим днем. Известно, что за перый день Руслан решил 13 задач. Определите, сколько задач решил Руслан в последний день, если со всеми задачами он справился за 12 дней.
Решение: Так как Руслан ежедневно решает на одно и тоже количество задач больше по сравнению с предыдущим днем, то последовательность решенных задач является арифметической прогрессией. Поэтому можно записать, что первый член арифметической прогрессии равен 13 или a1=13. Последний член равен an. Сумма прогрессии равна 420 или Sn = 420. Количество членов прогрессии равно количеству дней для решения n=12. Запишем формулу для определения суммы арифметической прогрессии Sn = (a1+an)n/2 Выразим из формулы an an = 2Sn/n - a1 Подставим известные значения an = 2*420/12 - 13 = 57 Поэтому в последний день Руслан решил 57 задач. ответ: 57
an =a1+(n-1)d или d =(an-a1)/(n-1) =(57-13)/(12-1) =44/11=4 Запишем эту последовательность 13;17;21;25;29;33;37;41;45;49;53;57 Сумма этих чисел равна 13+17+21+25+29+33+37+41+45+49+53+57= 420
вспомним что такое модуль
|x| = x x>=0
= -x x<0
Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение
(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)
D=1+8 = 9
x12=(-1+-3)/2 = -2 1
смотрим метод интервалов
[-2] [1] (3)
Итак при
1. x∈[-2 1) U (3 + ∞)
|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)
2. x∈(-∞-2) U [1 3)
|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)
решаем полученные уравнения
1. x∈[-2 1] U (3 + ∞)
(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз
x∈[-2 1) U (3 + ∞)
2. x∈(-∞-2) U (1 3)
(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)
2(x²+x-2)/(x-3) = 0
x=1 x=-2 решений нет
ответ x∈[-2 1] U (3 + ∞)
Решение:
Так как Руслан ежедневно решает на одно и тоже количество задач больше по сравнению с предыдущим днем, то последовательность решенных задач является арифметической прогрессией. Поэтому можно записать, что первый член арифметической прогрессии равен 13 или a1=13. Последний член равен an.
Сумма прогрессии равна 420 или Sn = 420. Количество членов прогрессии равно количеству дней для решения n=12.
Запишем формулу для определения суммы арифметической прогрессии
Sn = (a1+an)n/2
Выразим из формулы an
an = 2Sn/n - a1
Подставим известные значения
an = 2*420/12 - 13 = 57
Поэтому в последний день Руслан решил 57 задач.
ответ: 57
an =a1+(n-1)d или d =(an-a1)/(n-1) =(57-13)/(12-1) =44/11=4
Запишем эту последовательность
13;17;21;25;29;33;37;41;45;49;53;57
Сумма этих чисел равна
13+17+21+25+29+33+37+41+45+49+53+57= 420