Хорошо, вам не объяснили толково что такое вообще математическая логика, но это на самом деле нормальный случай, сами дают и не знают, что дают. Давайте разберемся. Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю. В данном случае за утверждение принимается: A - предположение, говорящее, что Первая буква гласная. B - предположение, говорящее, что Последняя буква согласная. Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры"). Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь). Давайте запишем как нужно само выражение. -A∧-B (вместо минусов нужно черточку над буквой). Таблица истинности выглядит так: В наименованиях столбцов пишите A и B и ваше выражение третьим. Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1. "НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот. "И" - дает 1 если оба операнда 1, иначе дает 0. "ИЛИ" - дает 0 если оба операнда 0, иначе дает 1. Вот и все. Заполняете и получаете нужное.
х=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х=18 (мин) время за которое 1-ый кран заполнит порожнюю ванну.
18-6=12 (мин) время за которое 2-ой кран опорожнит полную ванну.
Объяснение:
Пошаговое изъяснение: Пусть вся ванна 1 (единица), а х минут это время за которое 1-ый кран заполнит ванну, тогда время за которое 2-ой кран освободит ванну, будет х-6 минут. Производительность первого крана на заполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а общая производительность на опорожнение ванны 1/36. Составим уравнение:
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
1/(х-6) - 1/х = 1/36
36х-36(х-6)=х(х-6)
х-6х-216=0
D=900
х=-12 (мин) не подходит, т.к. время не может быть отрицательным.
х=18 (мин) время за которое 1-ый кран заполнит порожнюю ванну.
18-6=12 (мин) время за которое 2-ой кран опорожнит полную ванну.
Объяснение:
Пошаговое изъяснение: Пусть вся ванна 1 (единица), а х минут это время за которое 1-ый кран заполнит ванну, тогда время за которое 2-ой кран освободит ванну, будет х-6 минут. Производительность первого крана на заполнение будет 1/х; производительность второго крана на опорожнение будет 1/(х-6) , а общая производительность на опорожнение ванны 1/36. Составим уравнение: