Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение:
номер 1
1) 9х-6х=21
3х=21 х=7
2) 11х-4х=28
7х=28 х=4
3) 0.6-1.6х+6.4=21-1.2х
0.4х=-14 х=(-14)*4 х= - 64
4) (12х+18)(1.6-0.2х)=0
12х+18=0 12х=-18 х= -1.5 и
1.6-0.2х=0 0.2х=1.6 х=8
ответ: х= 8 или (-1.5)
5) 16х-14=18-20+16х -14=-2
выражение не имеет смысла
номер 2
пусть в первый день они Хкм, тогда во второй 2Хкм, а в третий Х+6
х+2х+х+6=38 4х=32 х=8
ответ: за перший дiнь км
номер 3: третий день х; тогда первый 3х, 2 день= х+8;
х+3х+х+8=58;
5х= 50; х=10 ответ: 10 км за третий день
Вероятность попадания в мишень одного стрелка при одном выстреле для первого стрелка равна 0.8, для второго стрелка – 0.85. Стрелки произвели по одному выстрелу в мишень. Считая попадание в цель для отдельных стрелков событиями независимыми, найти вероятность события А – ровно одно попадание в цель.
Решение.
Рассмотрим событие A - одно попадание в цель. Возможные варианты наступления этого события следующие:
Попал первый стрелок, второй стрелок промахнулся: P(A/H1)=p1*(1-p2)=0.8*(1-0.85)=0.12
Первый стрелок промахнулся, второй стрелок попал в мишень: P(A/H2)=(1-p1)*p2=(1-0.8)*0.85=0.17
Первый и второй стрелки независимо друг от друга попали в мишень: P(A/H1H2)=p1*p2=0.8*0.85=0.68
Тогда вероятность события А – ровно одно попадание в цель, будет равна: P(A) = 0.12+0.17+0.68 = 0.97
Объяснение: