the only thing that you have any questions please feel free contact us at our house in order for me to make this happen to make sure you have any questions or concerns you have a good idea to make sure you will be able to make this a good time for a great weekend as well as well but I am looking for a good day and time for me if you are doing good day please see the only one of our clients are saying I just want you have a good day I just want a good day please contact the only thing is I just want to i I just want a great day please see attached file is scanned image to be able to getting together.
F (x) = - x² -2x +8 ; * * * * * f(x) = 9 - (x+1)² * * * * * =(3² - (x+1)² =(3 -x -1)(3+x+1) = - (x+4)(x -2) * * * * * 1. ООФ : ( - ∞ ; ∞) . 2. Функция не четной и не нечетной * * * * * и не периодической * * * * * . 3 Точки пересечения функции с координатными осями : а) с осью y : x =0⇒ y = 8 ; A(0 ;8) * * * * * -0² -2*0 +8 =8 * * * * * б) с осью x : y =0 ⇒ - x² -2x +8 =0 ⇔ x² +2x -8 =0 ⇒x₁= -1 - 3 = - 4 ; x₂ = -1 +3 =2 . B(-4; 0) и C(2;0). * * * * * D/4 = (2/2)² -(-8) = 9 =3² * * * * * 4. Критические точки функции. * * * * * значения аргумента (x) при которых производная =0 или не существует) * * * * * f ' (x) = ( - x² -2x +8 )' = - (x²)' - (2x )' +(8 )' = -2* x - 2(x )' + 0 = -2x - 2 = -2(x+1); f ' (x) = 0 ⇒ x = -1 (одна критическая точка) . 5. Промежутки монотонности : а) возрастания : f ' (x) > 0 ⇔ -2(x+1) > 0 ⇔ 2(x+1) < 0 ⇔ x < -1 иначе x∈( -∞; -1). б) убывания : f ' (x) < 0 ⇔ -2(x+1) < 0 ⇔ 2(x+1) > 0 иначе x∈ ( 1 ;∞ ). 6. Точки экстремума: * * * * * производная меняет знак * * * * * x = - 1. 7. Максимальное и минимальное значение функции : Единственная точка экстремума x = - 1 является точкой максимума , т.к. производная меняет знак с минуса на плюс . max(y) = - (-1)² -2(-1) +8 = 9. 8. промежутки выгнутости и выпуклости кривой; найти точки перегиба. * * * * * f ' ' (x) =0 * * * * * f ' ' (x) =( f'(x))' =( -2x -2) ' = -2 < 0 ⇒ выпуклая в ООФ здесь R by (-∞; ∞) не имеет точки перегиба (точки при которых f ' ' (x) = 0 ) .
P.S. y = -x² -2x +8 = 9 -(x+1)² . График этой функции парабола вершина в точке M(- 1; 9) , ветви направлены вниз , что указано во второй строке решения . Эту функцию предлагали наверно для "тренировки".
the only thing that you have any questions please feel free contact us at our house in order for me to make this happen to make sure you have any questions or concerns you have a good idea to make sure you will be able to make this a good time for a great weekend as well as well but I am looking for a good day and time for me if you are doing good day please see the only one of our clients are saying I just want you have a good day I just want a good day please contact the only thing is I just want to i I just want a great day please see attached file is scanned image to be able to getting together.
* * * * * f(x) = 9 - (x+1)² * * * * * =(3² - (x+1)² =(3 -x -1)(3+x+1) = - (x+4)(x -2) * * * * *
1. ООФ : ( - ∞ ; ∞) .
2. Функция не четной и не нечетной * * * * * и не периодической * * * * * .
3 Точки пересечения функции с координатными осями :
а) с осью y : x =0⇒ y = 8 ; A(0 ;8) * * * * * -0² -2*0 +8 =8 * * * * *
б) с осью x : y =0 ⇒ - x² -2x +8 =0 ⇔ x² +2x -8 =0 ⇒x₁= -1 - 3 = - 4 ; x₂ = -1 +3 =2 .
B(-4; 0) и C(2;0).
* * * * * D/4 = (2/2)² -(-8) = 9 =3² * * * * *
4. Критические точки функции.
* * * * * значения аргумента (x) при которых производная =0 или не существует) * * * * *
f ' (x) = ( - x² -2x +8 )' = - (x²)' - (2x )' +(8 )' = -2* x - 2(x )' + 0 = -2x - 2 = -2(x+1);
f ' (x) = 0 ⇒ x = -1 (одна критическая точка) .
5. Промежутки монотонности :
а) возрастания :
f ' (x) > 0 ⇔ -2(x+1) > 0 ⇔ 2(x+1) < 0 ⇔ x < -1 иначе x∈( -∞; -1).
б) убывания :
f ' (x) < 0 ⇔ -2(x+1) < 0 ⇔ 2(x+1) > 0 иначе x∈ ( 1 ;∞ ).
6. Точки экстремума:
* * * * * производная меняет знак * * * * *
x = - 1.
7. Максимальное и минимальное значение функции :
Единственная точка экстремума x = - 1 является точкой максимума ,
т.к. производная меняет знак с минуса на плюс .
max(y) = - (-1)² -2(-1) +8 = 9.
8. промежутки выгнутости и выпуклости кривой; найти точки перегиба.
* * * * * f ' ' (x) =0 * * * * *
f ' ' (x) =( f'(x))' =( -2x -2) ' = -2 < 0 ⇒ выпуклая в ООФ здесь R by (-∞; ∞)
не имеет точки перегиба (точки при которых f ' ' (x) = 0 ) .
P.S. y = -x² -2x +8 = 9 -(x+1)² .
График этой функции парабола вершина в точке M(- 1; 9) , ветви направлены вниз , что указано во второй строке решения .
Эту функцию предлагали наверно для "тренировки".