2) находим значение этих производных в точке М: du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy. dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М. dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.
12600 | 2 8820 | 2
6300 | 2 4410 | 2
3150 | 2 2205 | 3
1575 | 3 735 | 3
525 | 3 245 | 5
175 | 5 49 | 7
35 | 5 7 | 7
7 | 7 1
1 8820 = 2² · 3² · 5 · 7²
12600 = 2³ · 3² · 5² · 7
НОК = 2³ · 3² · 5² · 7² = 88200 - наименьшее общее кратное
НОД = 2² · 3² · 5 · 7 = 1260 - наибольший общий делитель
НОК : НОД = 88200 : 1260 = 70 - частное
ответ: 70.
du/dx=(-y/x²)*1/(1+y²/x²)=-y/(x²+y²), du/dy=(1/x)*x²/(x²+y²)=x/(x²+y²)
2) находим значение этих производных в точке М:
du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy.
dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М.
dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле
du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.