3) Биссектриса угла делит противоположную сторону на отрезки пропорциональные прилегающим сторонам.
КС/ВК = АС/АВ
18/8=АС/12
АС=(18 х 12) : 8=27
4) BM : MC = 2 : 9, то есть BM = 2x и MC = 9x
Рассмотрим ΔABC и ΔKBM
По условию MK ║ AC ⇒ ∠BKM = ∠A - соответственные углы
∠B - общий ⇒ ΔABC ~ ΔKBM по двум равным углам. ⇒
ответ: AC = 99 см
5) Рассмотрим треугольники ВСО и АОД:
1) угол ВСО = углу АОД (вертикальные углы);
2) угол АДО = углу ОВС (накрест лежащие при параллельных ВС и АД и секущей АД)
Значит треугольник ВСО подобен треугольнику АОД по первому признаку.
Из подобнисти треугольников следует пропорциональность сторон:
ВС/AD = BO/OD
3/5 = х/х-24
72-3х = 5х
-8х = -72
х = 9
ВО = 9 см
ОД = 15 см
3) Биссектриса угла делит противоположную сторону на отрезки пропорциональные прилегающим сторонам.
КС/ВК = АС/АВ
18/8=АС/12
АС=(18 х 12) : 8=27
4) BM : MC = 2 : 9, то есть BM = 2x и MC = 9x
Рассмотрим ΔABC и ΔKBM
По условию MK ║ AC ⇒ ∠BKM = ∠A - соответственные углы
∠B - общий ⇒ ΔABC ~ ΔKBM по двум равным углам. ⇒
ответ: AC = 99 см
5) Рассмотрим треугольники ВСО и АОД:
1) угол ВСО = углу АОД (вертикальные углы);
2) угол АДО = углу ОВС (накрест лежащие при параллельных ВС и АД и секущей АД)
Значит треугольник ВСО подобен треугольнику АОД по первому признаку.
Из подобнисти треугольников следует пропорциональность сторон:
ВС/AD = BO/OD
3/5 = х/х-24
72-3х = 5х
-8х = -72
х = 9
ВО = 9 см
ОД = 15 см
xy(x+y) = 30;
(x+y) + (x+y)^2 - 2xy = 18;
xy(x+y) = 30;
m = x+y;
n = xy;
m^2 + m - 2n = 18;
m n = 30; n = 30 /m;
m^2 + m - 60/m = 18;
m^3 + m^2 - 18m - 60 = 0;
Методом подбора или по таблице Горнера определим делитель , равный 5. Разделим уголком выражение на 5 и получим
_m^3 + m^2 - 18m -60 : m - 5
m^3 - 5 m^2 m^2 +6m +12.
_6m^2 -18 m - 60
6m^2 -30m
_12 m - 60
12m - 60
0.
теперь наше выражение примет вид;
(m-5)(m^2 + 6m + 12) = 0;
m^2 + 6m + 12 =0; D <0 ; ⇒корней нет.
Остается один корень m = 5.
n = 30/ m = 6;
x+y = 5; x = 5- y;
xy = 6; y(5-y)= 6;
- y^2 + 5y - 6 = 0;
y^2 - 5y + 6 = 0;
y1 = 3; x1 = 5 - 3= 2;
y2= 2; x2 = 5 - 2 = 3.
ответ (2; 3); (3;2)