Против течения катер: Путь = S Скорость = x - y Время = 4 По течению катер: Путь= S Скорость = x + y Время = 3 По течению плот Путь = S Скорость = y Время = ? Выражаем x через y, приравнивая пути в пункте 1 и 2: 4(x - y) = 3(x + y) 4x - 4y = 3x + 3y x = 7y Формируем таблицу второй раз: Против течения катер: Путь = S Скорость = 6y Время = 4 По течению катер: Путь = S Скорость = 8y Время = 3 По течению плот: Путь = S Скорость = y Время = S/y
В пункте 3 в формуле Время подставляем вместо S любое выражение из первых двух пунктов. Например, из первого: Время = S/y = 4*6y/y = 24
Путь = S
Скорость = x - y
Время = 4
По течению катер:
Путь= S
Скорость = x + y
Время = 3
По течению плот
Путь = S
Скорость = y
Время = ?
Выражаем x через y, приравнивая пути в пункте 1 и 2:
4(x - y) = 3(x + y)
4x - 4y = 3x + 3y
x = 7y
Формируем таблицу второй раз:
Против течения катер:
Путь = S
Скорость = 6y
Время = 4
По течению катер:
Путь = S
Скорость = 8y
Время = 3
По течению плот:
Путь = S
Скорость = y
Время = S/y
В пункте 3 в формуле Время подставляем вместо S любое выражение из первых двух пунктов. Например, из первого:
Время = S/y = 4*6y/y = 24
Объяснение:
1.
Функция квадратичная, графиком является парабола.
Коэффициент а = 1/4 > 0, значит ветви параболы направлены вверх.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈ [ 0 ; + ∞ ).
2. у = - 2х²
Функция квадратичная, графиком является парабола.
Коэффициент а = - 2 < 0, значит ветви параболы направлены вниз.
Ось симметрии: х = 0.
График проходит через начало координат.
Находим значения функции в некоторых точках (см. рисунок) и строим график.
Функция возрастает при x ∈( - ∞ ; 0 ]