Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
1. 2. 3.64x+x⁻¹=-16 64x+1/x+16=0 (64x²+1+16x)/x=0 x может принимать любые значения кроме 0, поэтому 64x²+16x+1=0 D=16²-4*64=256-256=0 x=-16/(2*64)=-1/8 4. Пусть скорость автобуса х км/ч, тогда скорость автомобиля 1,5х км/ч. Автобус затратил на поездку 200/х часов, а автомобиль 200/1,5х часов. Автомобиль выехал позже на 1 ч. 20 мин. или 4/3 часа. Так как автомобиль и автобус прибыли одновременно, то можно записать 200/x-200/1,5x=4/3 200*1,5-200=(4*1,5x)/3 300-200=(6x)/3 100=2x x=100:2 x=50 км/ч - скорость автобуса.
Решим неравенства:
(1) x > 35
(2) x ≤ 99
(3) x > 8
(4) x ≥ 10
(5) x > 5
Если верно неравенство (1), то автоматически верны неравенства (3), (4) и (5), и верных неравенств не меньше 4, хотя по условию их только 3. Значит, неравенство (1) неверно, x ≤ 35, откуда следует, что неравенство (2) верно.
Среди оставшихся неравенств (3), (4) и (5) должны быть два верных и одно неверное. Если верно неравенство (4), то сразу же верны и остальные неравенства, чего быть не должно, поэтому неравенство (4) неверно, а неравенства (3) и (5) верны.
Системе неравенств 5 < 8 < x < 10 ≤ 35 ≤ 99 удовлетворяет единственное натуральное число x = 9.
ответ. x = 9
2.
3.64x+x⁻¹=-16
64x+1/x+16=0
(64x²+1+16x)/x=0
x может принимать любые значения кроме 0, поэтому
64x²+16x+1=0
D=16²-4*64=256-256=0
x=-16/(2*64)=-1/8
4. Пусть скорость автобуса х км/ч, тогда скорость автомобиля 1,5х км/ч. Автобус затратил на поездку 200/х часов, а автомобиль 200/1,5х часов. Автомобиль выехал позже на 1 ч. 20 мин. или 4/3 часа. Так как автомобиль и автобус прибыли одновременно, то можно записать
200/x-200/1,5x=4/3
200*1,5-200=(4*1,5x)/3
300-200=(6x)/3
100=2x
x=100:2
x=50 км/ч - скорость автобуса.