Чтобы представить данное произведение двух скобок в виде многочлена, необходимо раскрыть скобки. Сначала первое слагаемое первой скобки умножаем на каждый член второй скобки, затем то же самое проделываем со вторым слагаемым первой скобки: (х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6 Приведём подобные слагаемые: х³-36*6 Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид: х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов: а³-с³=(а-с)(а²+ас+с²) Наше выражение как раз имеет такой вид: (х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
1. 4⅓+3(1/5)=(13/3)+(16/5)=(13×5+16×3)/15=(65+48)/15=(113/15)
2. (113/15)÷113=(113/15)×(1/113)=(1/15)
2) (6-7⅛)×((2/9)+⅔)=(-1)
1. 6-7⅛=6-(57/6)=(6×8-57)/8=(48-57)/8=(-9/8)
2. (2/9)+⅔=(2+2×3)/9=(8/9)
3. (-9/8)×(8/9)=-1
3) 17÷(4⅓-3(1/5))=15
1. 4⅓-3(1/5)=(13/3)-(16/5)=(13×5-16×3)/15=(65-48)/15=17/15
2. 17÷(17/15)=17×15/17=15
4) (15-4⅛)×(3(14/15)-2(3/5))=14,5
1. 15-4⅛=15-(33/8)=(15×8-33)/8=(120-33)/8=(87/8)
2. 3(14/15)-2(3/5)=(59/15)-(13/5)=(59-13×3)/15=(59-39)/15=20/15
3. (87/8)×(20/15)=(87×4×5)/(2×4×3×5)=87/6=29/2=14½=14,5
(х-6)(х²+6х+36)=х³+6х²+36х-6х²-36х-36*6
Приведём подобные слагаемые:
х³-36*6
Если быть внимательным, можно заметить, что 36*6=6*6*6=6³, а выражение х³-36*6 приобретёт вид:
х³-6³ - это и будет ответом.
Но если посмотреть ещё внимательнее в самом начале решения данной задачи, можно заметить формулу разности кубов:
а³-с³=(а-с)(а²+ас+с²)
Наше выражение как раз имеет такой вид:
(х-6)(х²+6х+36)=(х-6)(х²+6х+6²)=х³-6³
В любом случае получаем ответ:х³-6³.