Решим задачу через геометрическое определение вероятности.
Обозначим за х и у время прихода пассажиров:
В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата. Пассажиры встретятся, если между моментами их прихода пройдет не более 2 минут, то есть:
Что равносильно следующей системе:
На графике такая область выглядит следующим образом (см. рисунок).
Тогда вероятность встречи равна отношению площади закрашенной области к площади всего квадрата.
Площадь закрашенной области равна разности площади квадрата и двух прямоугольных треугольников с катетами 10-2=8 .
Площадь прямоугольника равна длине, умноженной на ширину .
(a-b)(a+b)=S₃+S₄ , прямоугольник заштрихован зелёными линиями , состоящий из суммы двух прямоугольников S₃ и S₄ .
Площадь квадрата, обведённого синим контуром равна a²=S₁+S₂+S₃ .
Площадь квадрата, обведённого жёлтым контуром равна b²=S₁ .
Если от площади квадрата а² вычесть площадь квадрата b², то получим а²-b²=(S₁+S₂+S₃)-S₁=S₂+S₃ .
Получившаяся область заштрихована красными линиями. Она состоит из суммы двух прямоугольников S₂ и S₃ , площади которых равны S₂=b(a-b)=ab-b² , S₃=a(a-b)=a²-ab .
S₂+S₃=ab-b²+a²-ab=a²-b²
S₃+S₄=a(a-b)+b(a-b)=S₃+S₂ , S₃+S₄=a²-b² .
Геометрически площадь области, заштрихованной зелёной штриховкой, равна площади области, заштрихованной красной штриховкой: S₂+S₃=S₃+S₄ .
Объяснение:
Решим задачу через геометрическое определение вероятности.
Обозначим за х и у время прихода пассажиров:
В прямоугольной системе координат этому условию удовлетворяют точки, лежащие внутри квадрата. Пассажиры встретятся, если между моментами их прихода пройдет не более 2 минут, то есть:
Что равносильно следующей системе:
На графике такая область выглядит следующим образом (см. рисунок).
Тогда вероятность встречи равна отношению площади закрашенной области к площади всего квадрата.
Площадь закрашенной области равна разности площади квадрата и двух прямоугольных треугольников с катетами 10-2=8 .
Тогда:
Площадь прямоугольника равна длине, умноженной на ширину .
(a-b)(a+b)=S₃+S₄ , прямоугольник заштрихован зелёными линиями , состоящий из суммы двух прямоугольников S₃ и S₄ .
Площадь квадрата, обведённого синим контуром равна a²=S₁+S₂+S₃ .
Площадь квадрата, обведённого жёлтым контуром равна b²=S₁ .
Если от площади квадрата а² вычесть площадь квадрата b², то получим а²-b²=(S₁+S₂+S₃)-S₁=S₂+S₃ .
Получившаяся область заштрихована красными линиями. Она состоит из суммы двух прямоугольников S₂ и S₃ , площади которых равны S₂=b(a-b)=ab-b² , S₃=a(a-b)=a²-ab .
S₂+S₃=ab-b²+a²-ab=a²-b²
S₃+S₄=a(a-b)+b(a-b)=S₃+S₂ , S₃+S₄=a²-b² .
Геометрически площадь области, заштрихованной зелёной штриховкой, равна площади области, заштрихованной красной штриховкой: S₂+S₃=S₃+S₄ .