очень Выполнить действия:
1) (3a ^2 b+6ab ^2 ):3a =
2) x ^2 y(2x-3y)=
3) (7a^ 2 +10a^ 3 b):a ^2 =
4) (14m^ 3 n ^3 -21m^ 3 n ^6 ):(-7mn)=
2) Выполнить деление :
a) (4a-16ab^3 ):4a=
b) (6x ^2 y ^3 -2x ^4 y ^6 +12xy ^3 ):2xy^ 3 =
c)(7m+21mn^ 2 ):7m=
d)(2x ^3 y ^4 -8x ^2 y ^5 +4x ^5 y ^2 ):2x ^2 y=
e)(x ^4 y -x ^7 ):(-x ^2 )=
f)(0,36a ^2 - 0,81ab ^3 ):0,9a=
Отталкиваемся от признаков деления на:
2 - последняя цифра делится на 2(0, 2, 4, 6, 8);
4 - число из двух последних цифр делится на 4(00, 04, 08, 12, 16…92, 96);
5 - последняя цифра делится на 5.
Прибавляем необходимый остаток от деления к этим "хвостикам" и смотрим, как сочетаются варианты. Получаем, что две последние цифры числа могут быть 19, 39, 59, 79, 99.
Надеюсь, установить, какое из этих чисел даёт в остатке 2 при делении на 3, получится самостоятельно.
0: 1; 0; 0; 0; 0; 0; 0; 0; 0
1: 1/2; 1/2; 0; 0; 0; 0; 0; 0; 0
2: 1/4; 2/4; 1/4; 0; 0; 0; 0; 0; 0
3: 1/8; 3/8; 3/8; 1/8; 0; 0; 0; 0; 0
4: 1/16; 4/16; 6/16; 4/16; 1/16; 0; 0; 0; 0
5: 1/32; 5/32; 10/32; 10/32; 5/32; 1/32; 0; 0; 0
6: 1/64; 6/64; 15/64; 20/64; 15/64; 6/64; 1/64; 0; 0
7: 1/128; 7/128; 21/128; 35/128; 35/128; 21/128; 7/128; 1/128; 0
8: 1/256; 8/256; 28/256; 56/256; 70/256; 56/256; 28/256; 8/256; 1/256
Обрати внимание: знаменатели - это 2 в степени шага,
а числители - биномиальные коэффициенты разложения (a + b)^n
В 7 бочке стало 28/256 = 7/64 = 0,109375 ~ 0,11