Подробное объяснение: в задании номер 1 число 3 в 4 степени возводится в 5 степень. Когда ты видишь что-то наподобие этого, то степени перемножаются: то есть 4 степень умножаем на 5 степень и получаем 20 степень, то есть 3 в 20 степени. Далее, в числителе, видим:
Здесь степени тоже умножаюся, потому что умножаются сами числа. Перемножаем и получаем 3 в 23 степени. Ну и затем остается сократить то, что получилось:
Сокращаем и получаем:
Задание номер 2.
Ну, тут все просто, тут надо правильно перемножить, как на фото. С умножением степеней ситуация та же, что и в 1 задании.
Подробное объяснение: в задании номер 1 число 3 в 4 степени возводится в 5 степень. Когда ты видишь что-то наподобие этого, то степени перемножаются: то есть 4 степень умножаем на 5 степень и получаем 20 степень, то есть 3 в 20 степени. Далее, в числителе, видим:
Здесь степени тоже умножаюся, потому что умножаются сами числа. Перемножаем и получаем 3 в 23 степени. Ну и затем остается сократить то, что получилось:
Сокращаем и получаем:
Задание номер 2.
Ну, тут все просто, тут надо правильно перемножить, как на фото. С умножением степеней ситуация та же, что и в 1 задании.
Надеюсь
В решении.
Объяснение: По строкам:
| 2⁴ | 2 | 2⁴ | 2⁹
| 2³ | 2³ | 2³ | 2⁹
| 2² | 2⁵ | 2² | 2⁹
| 2⁹ | 2⁹ | 2⁹ (по столбцам)
1 диагональ - 2⁹;
2 диагональ - 2⁹.
Запись в тетради: 2*2*2*2 = 2⁴;
2*2*2 = 2³;
2*2 = 2²;
2*2*2*2*2 = 2⁵;
Первая строка: 2⁴*2*2⁴ = 2⁹;
Вторая строка: 2³*2³*2³ = 2⁹;
Третья строка: 2²*2⁵*2² = 2⁹;
Первый столбец: 2⁴*2³*2² = 2⁹;
Второй столбец: 2*2³*2⁵ = 2⁹;
Третий столбец: 2⁴*2³*2² = 2⁹.
Первая диагональ: 2⁴*2³*2² = 2⁹;
Вторая диагональ: 2⁴*2³*2² = 2⁹.
Вывод: в магическом квадрате сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинаковая.