В решении.
Объяснение:
ОБРАТНАЯ ПРОПОРЦИОНАЛЬНОСТЬ ЗАДАНА ФОРМУЛОЙ у=36/х . ВПИШИТЕ ПРОПУЩЕННЫЕ ЧИСЛА.
Нужно подставлять в формулу известное значение и вычислять неизвестное:
1) у=36 при х= 1;
36 = 36/х х=1;
2) у=12 при х=3;
у = 36 /3 у=12;
3) у=108 при х=1/3 ;
у = 36 : 1/3 = (36*3)/1 = 108;
4) у=4 при х= 9;
4 = 36/х х=9;
5) у=8 при х=9/2;
у = 36 : 9/2 = (36*2)/9 = 8;
6) у=90 при х=2/5;
у = 36 : 2/5 = (36*5)/2 = 18*5 = 90;
7) у= -9 при х= -4;
-9 = 36/х х= -4;
8) у= -44 при х= -9/11;
у = 36 : (-9/11) = -(36*11)/9 = -44;
9) у= -2 при х= -18;
-2 = 36/х х= -18.
неравенство. Выпишите правильный ответ.
а) х 2 + 5х = 0 в) х 2 – 2х < 7
б) – 6х – 8 > х + 3 г) х + 9 = 4х – 16
2. Выясните, решением какого неравенства является число 2.
Выпишите правильный ответ.
а) х 2 – х < 0 в) х 2 + х – 3 > 0
б) – х 2 + 4х – 5 > 0 г) х 2 – 2х < 0
3. Решите неравенство методом интервалов и выпишите
верный ответ: (х – 5)(х + 3) > 0
а)
в)
– 5 3 – 3 5
б) г)
– 3 5 – 5 3
4. Установите соответствие между квадратными
неравенствами и их решениями. ответ запишите в таблицу.
А [–6; 2]
1 х 2 + 4х – 12 ≥ 0 Б (–∞; –2] U [6; +∞)
2 х 2 – 4х – 12 ≤ 0 В (–∞; –6] U [2; +∞)
3 х 2 + 4х – 12 ≤ 0 Г [–6; –2]
4 х 2 – 4х – 12 ≥ 0 Д [–2; 6]
Е (–∞; 2] U [–6; +∞)
5. Решите квадратные неравенства и запишите полученные
ответы.
а) – 2х 2 – 5х + 3 ≤ 0 б) 3х 2 – 4х + 7 >
В решении.
Объяснение:
ОБРАТНАЯ ПРОПОРЦИОНАЛЬНОСТЬ ЗАДАНА ФОРМУЛОЙ у=36/х . ВПИШИТЕ ПРОПУЩЕННЫЕ ЧИСЛА.
Нужно подставлять в формулу известное значение и вычислять неизвестное:
1) у=36 при х= 1;
36 = 36/х х=1;
2) у=12 при х=3;
у = 36 /3 у=12;
3) у=108 при х=1/3 ;
у = 36 : 1/3 = (36*3)/1 = 108;
4) у=4 при х= 9;
4 = 36/х х=9;
5) у=8 при х=9/2;
у = 36 : 9/2 = (36*2)/9 = 8;
6) у=90 при х=2/5;
у = 36 : 2/5 = (36*5)/2 = 18*5 = 90;
7) у= -9 при х= -4;
-9 = 36/х х= -4;
8) у= -44 при х= -9/11;
у = 36 : (-9/11) = -(36*11)/9 = -44;
9) у= -2 при х= -18;
-2 = 36/х х= -18.
неравенство. Выпишите правильный ответ.
а) х 2 + 5х = 0 в) х 2 – 2х < 7
б) – 6х – 8 > х + 3 г) х + 9 = 4х – 16
2. Выясните, решением какого неравенства является число 2.
Выпишите правильный ответ.
а) х 2 – х < 0 в) х 2 + х – 3 > 0
б) – х 2 + 4х – 5 > 0 г) х 2 – 2х < 0
3. Решите неравенство методом интервалов и выпишите
верный ответ: (х – 5)(х + 3) > 0
а)
в)
– 5 3 – 3 5
б) г)
– 3 5 – 5 3
4. Установите соответствие между квадратными
неравенствами и их решениями. ответ запишите в таблицу.
А [–6; 2]
1 х 2 + 4х – 12 ≥ 0 Б (–∞; –2] U [6; +∞)
2 х 2 – 4х – 12 ≤ 0 В (–∞; –6] U [2; +∞)
3 х 2 + 4х – 12 ≤ 0 Г [–6; –2]
4 х 2 – 4х – 12 ≥ 0 Д [–2; 6]
Е (–∞; 2] U [–6; +∞)
5. Решите квадратные неравенства и запишите полученные
ответы.
а) – 2х 2 – 5х + 3 ≤ 0 б) 3х 2 – 4х + 7 >