1 этап составление математической модели Пусть первоначальная цена куртки равна х руб, тогда цена куртки после снижения её на 20% составила (1-0,2)*х=0,8х руб, а после дальнейшего повышения на 10% составила 0,8х*(1+0,1)=0,8х*1,1=0,88х руб. По условию, разница между первоначальной ценой и последней составила 180 руб. Составляем уравнение: х - 0,88х =180
2 этап работа с математической моделью (решение уравнения) 0,12х =180 х=180:0,12 х=1500
3 этап ответ на вопрос задачи Получили х=1500 руб. - составила первоначальная цена куртки
Определим общее число расстановок на пяти позициях 5 шариков:
Однако, среди этих расстановок есть недопустимые (то есть те, при которых между зеленым и желтым шариком располагаются два или более шарика). Найдем число недопустимых расстановок.
Найдем число недопустимых размещений зеленого и желтого шарика. Их можно просто перечислить:
1) зеленый на 1-ом месте, желтый на 4-ом месте
2) зеленый на 1-ом месте, желтый на 5-ом месте
3) зеленый на 2-ом месте, желтый на 5-ом месте
4) зеленый на 4-ом месте, желтый на 1-ом месте
5) зеленый на 5-ом месте, желтый на 1-ом месте
6) зеленый на 5-ом месте, желтый на 1-ом месте
В каждом из этих случаев оставшиеся три шарика могут размещаться на свободных местах
Таким образом, всего имеется недопустимых расстановок.
Пусть первоначальная цена куртки равна х руб,
тогда цена куртки после снижения её на 20% составила (1-0,2)*х=0,8х руб,
а после дальнейшего повышения на 10% составила 0,8х*(1+0,1)=0,8х*1,1=0,88х руб.
По условию, разница между первоначальной ценой и последней составила 180 руб.
Составляем уравнение:
х - 0,88х =180
2 этап работа с математической моделью (решение уравнения)
0,12х =180
х=180:0,12
х=1500
3 этап ответ на вопрос задачи
Получили х=1500 руб. - составила первоначальная цена куртки
ответ: 1500 руб.
Определим общее число расстановок на пяти позициях 5 шариков:
Однако, среди этих расстановок есть недопустимые (то есть те, при которых между зеленым и желтым шариком располагаются два или более шарика). Найдем число недопустимых расстановок.
Найдем число недопустимых размещений зеленого и желтого шарика. Их можно просто перечислить:
1) зеленый на 1-ом месте, желтый на 4-ом месте
2) зеленый на 1-ом месте, желтый на 5-ом месте
3) зеленый на 2-ом месте, желтый на 5-ом месте
4) зеленый на 4-ом месте, желтый на 1-ом месте
5) зеленый на 5-ом месте, желтый на 1-ом месте
6) зеленый на 5-ом месте, желтый на 1-ом месте
В каждом из этих случаев оставшиеся три шарика могут размещаться на свободных местах
Таким образом, всего имеется недопустимых расстановок.
Значит, допустимых расстановок имеется:
ответ: 84