Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение:
sint + sint = √2
2sint = √2
sint = √2/2
t = (-1)^(n)*arcsin(√2/2) + πn, n∈Z
t = (-1)^(n)*(π/4) + πn, n∈Z
2) Sin x/3 = -1/2
x = (-1)^(n)*arcsin(-1/2) + πk, n∈Z
x/3 = (-1)^(n+1)*arcsin(1/2) + πk, k∈Z
x/3 = (-1)^(n+1)*(π/6) + πk, k∈Z
x = (-1)^(n+1)*(3π/6) + 3πk, k∈Z
x = (-1)^(n+1)*(π/2) + 3πk, k∈Z
3) 5 Cos^2 x + 6 Sin x - 6 = 0
5*(1 - sin^2x) + 6sinx - 6 = 0
5 - 5*(sin^2x) + 6sinx - 6 = 0
5*(sin^2x) - 6sinx + 1 = 0
D = 36 - 4*5*1 = 16
a) sinx = (6 - 4)/10
sinx = 1/5
x = (-1)^(n)*arcsin(1/5) + πn, n∈Z
б) sinx = (6 + 4)/10
sinx = 1
x = π/2 + 2πk, k∈Z
Для нахождения решения корней x2 - 6x = 16 полного квадратного уравнения мы начнем с того, что перенесем 16 в левую часть уравнения:
x2 - 6x - 16 = 0.
Для решения уравнения будем использовать формулы для поиска дискриминанта и корней уравнения через дискриминант.
D = b2 - 4ac = (-6)2 - 4 * 1 * (-16) = 36 + 64 = 100;
Корни уравнения мы вычислим по следующим формулам:
x1 = (-b + √D)/2a = (6 + √100)/2 * 1 = (6 + 10)/2 = 16/2 = 8;
x2 = (-b - √D)/2a = (6 - √100)/2 * 1 = (6 - 10)/2 = -4/2 = -2.
ответ: x = 8; x = -2.
Объяснение: