Прямые пересекаются тогда когда они не параллельны, прямые параллельны тогда когда коэффициенты к1=к2,где у1=к1х+в; у2=к2х+в
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
а) прямые идентичны - совпадают они не могут быть параллельны;
б)к1=-3 к2=2 то есть к1 не равно к2 таким образом прямые пересекаются, найдем точку пересечения
-3х+4=2х-1
-5х=-1-4
х=1 ттогда у=-3*(1)+4=1 то есть прямые пересекаются в точке (1;1)
в)опять же прямые совпадают
г)-5 не равно 1 то есть прямые пересекаются, ищем точку
-5х+3=х-3
-6х=-6
х=1 тогда у=-5*1+3=-2 то есть пересекаются в точке (1;-2)
д)1=1 то есть прямые параллельны, не пересекаются
е)тоже параллельны так как 1,5=1,5
ж) прямые параллельны
з) прямые пересекаюстя так как 79 не равно 75
и пересекаются они в точке:
79х=75х
х=0 тогда у=79*0=0 (0;0)
56 мин=56\60 часа.
Пусть первый велосипедист был в пути t часов до встречи.
Второй ехал t и ещё 56/60 часа, когда первый стоял.
Формула пути S=vt (v -скорость, t-время)
До встречи первый проехал S₁= 20•t км, второй S₂=30•(t+56/60)
Расстояние между городами равно 93 км.
S₁+S₂=93 км
20t +30•(t+56/60)=93
20t+30t+30•56/60=93
50t=93-28
t=65:50
t=1,3 ( часа) - время, которое был в пути первый велосипедист.
За это время он проехал
20•1,3=26 (км)
Второй велосипедист проехал остальное расстояние между городами:
93-26=67 км - на таком расстоянии от второго города произошла встреча.