x=3. Подставляем во второе уравнение. 3-y=2 очевидно, что y=1. Упор.пара: (3,1) 2)
То же самое.
y=1 Подставляем в первое уравнение. x+1=3 => x=2. (2,1) - упор.пара (если все строго). 3)
Тут на самом деле несколько вариантов элементарного решения. Я использую самый простой (но не самый короткий). Модуль дает нам этакую мини-системку для первого уравнения, в одном ур. x, в другом -x. Типа:
Только маленькая скобка не фигурная, а квадратная. Решается так - сначала подставляешь в систему первое уравнение, затем второе (по очереди). 3.1) Здесь:
Просто сложим два уравнения.
Получается:
x=3.
Подставляем во второе уравнение.
3-y=2 очевидно, что y=1. Упор.пара: (3,1)
2)
То же самое.
y=1
Подставляем в первое уравнение.
x+1=3 => x=2. (2,1) - упор.пара (если все строго).
3)
Тут на самом деле несколько вариантов элементарного решения. Я использую самый простой (но не самый короткий).
Модуль дает нам этакую мини-системку для первого уравнения, в одном ур. x, в другом -x.
Типа:
Только маленькая скобка не фигурная, а квадратная.
Решается так - сначала подставляешь в систему первое уравнение, затем второе (по очереди).
3.1) Здесь:
Решаем подстановкой.
5-y+4y=5
3y=0
y=0 => x=5. (5,0) ответ.
3.2) Здесь:
То же самое.
y-5+4y=5
5y=10
y=2.
x+8=5 => x=-3
(-3,2) - ответ.
2sinxcosx-√3cosx=0
cosx(2sinx-√3)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√3/2⇒x=(-1)^n*π/3+πk,k∈Z
б)sin 2x=√2 cos x
2sinxcosx-√2cosx=0
cosx(2sinx-√2)=0
cosx=0⇒x=π/2+πn,n∈Z
sinx=√2/2⇒x=(-1)^n*π/4+πk,k∈Z в)sin(0,5п+x)+ sin 2x=0
г)cos(0,5п+x)+ sin 2x=0
-sinx+2sinxcosx=0
-sinx(1-2cosx)=0
sinx=0⇒x=πn,n∈Z
cosx=1/2⇒x=+-π/3+2πk,k∈Z
д)sin 4x+√3 sin 3x+sin 2x=0
2sin3xcosx+√3sin3x=0
sin3x(2cosx+√3)=0
sin3x=0⇒3x=πn,n∈Z⇒x=πn/3,n∈Z
cosx=-√3/2⇒x=+-5π/6+2πk,k∈Z
е)cos 3x+sin 5x=sin x
cos3x+sin5x-sinx=0
cos3x+2sin2xcos3x=0
cos3x(1+2sin2x)=0
cos3x=0⇒3x=π/2+πn,n∈Z⇒x=π/6+πn/3,n∈Z
sin2x=-1/2⇒2x=(-1)^(k+1)*π/6+πk,k∈Z⇒x=(-1)^(n+1)*π/12+πk/2,k∈Z