Определи несколько начальных членов возрастающей последовательности всех натуральных чисел, кратных семи. Укажи её седьмой, девятый, двадцать первый, n-й члены.
ответ:
a7=
a9=
a21=
(В первом окошке указывай число, во втором — переменную)
an(В первом окошке указывай число, во втором — переменную)
an=*
за 88 дней
Объяснение:
Егору задали решать в день x задач. Из условия получаем, что
(x+6)*44=(x+2)*66
44x+264=66x+132
264-132=66x-44x
132=22x
6=x
В день ему задали решать 6 задач
Если он будет решать на 6 больше (то есть по 12) то он справится за 44 дня, и решит всего 12*44=528 задач
Если он будет решать в день на 2 больше (то есть по 8) то он справится за 66 дней и решит те же самые 8*66=528 задач
Если же он будет следовать полученным указаниям и решать как сказали по 6 в день, то он справится за 528/6=88 дней
1,5 • 2⁴ - 3² = 15
1)2⁴ = 16
2)3² = 9
4)1,5 • 16 = 24
5)24 - 9 = 15
Предоставьте в виде степени выражения :
1)а7 • а4=а7+4=11
2)а7 : а4=а7-4 =а3
3)(а7)4=а7•4=а28
Преобразуйте выражения в одночлен стандартного вида :
1)-
2)-64а(в 6 степени)b( в 18 степени)
Предоставьте в виде многочлена стандартного вида выражения :
5А²-2А-3)-(2А²+2А-5)=
=5А²-2А-3-2А²-2А+5=
=3А²-4А+2
Упростить выражения :
81х5у
81х5=405
405у
Вместо звёздочки запишите такой многочлен чтобы образовалось тождество :
5х² -3ху -у²) - (4х²-у²)=5х² -3ху -у² -4х²+у²=х² -3ху
Докажите что значение выражения (14n+19)-(8n-5) кратко 6 при любом натуральном значении n :
14n+19)-(8n-5)= 6n+24 = 6*(n+8) - кратно 6.
Известно что 4а3b=-5 найдите значения выражения :
1) Преобразуем выражение следующим образом:
-8a^3b = -2 * 4a^3b;
Подставим заданное значение 4a^3b = -5 в преобразованное выражение.
Если 4a^3b = -5, тогда -2 * 4a^3b = -2 * (-5) = 10;
2) Преобразуем выражение следующим образом:
4a^6b^2 = 4 * (a^3b) ^ 2;
Найдем из заданного равенства 4a^3b = -5 значение a^3b;
a^3b = -5 : 4;
a^3b = -5/4;
Подставим найденное значение a^3b = -1,25 в преобразованное выражение.
Если a^3b = -5/4, тогда 4 * (a^3b) ^ 2 = 4 * (-5/4) ^ 2 = 4 * 25/16 = 25/4 = 6,25;