A,b,c могут считаться базисом, если определитель из столбцов их координат не равен 0. 4 3 -1det( 5 0 4) = -3*(5*2-4*2) - 1*(4*4-(-1)*5) = -27 - не равен 0, значит вектора 2 1 2a,b,c образуют базис, что и требовалось показать.Вектор d представим в виде:d = p*a + q*b + r*cТак как координаты d заданы, получим систему уравнений для коэффициентов p,q,r:4p + 3q - r = 55p + 4r = 72p + q + 2r = 8 q = 8-2p-2r тогда получим систему 2p+7r=19 5p+4r=7Решив, получим: p = -1, r = 3 и тогда q = 4Значит разложение выглядит так:d = -a + 4b + 3c
3(5+2у)+8у=1 5х-у=10 сложим эти уравнения
15+6у+8у=1 8х = 24
14у=-14 х=24/8=3
у=-1, у=14-3*3=14-9=5
х=5-2=3,
ответ:(3;-1) ответ: (3; 5)
3) х=7-4у 4) 2х-3у=5 |*2 , умножим ур-ние на 2
7-4у-2у=-5 3х+2у=14 |*3, умножим на 3 уравнение
6у=12 4x-6y=10 и выполним сложение
у=2 9x+6y=42 этих ур. и получим
х=7-8=-1 13x=52, x=4,
ответ: (-1; 2) 12+2y=14
2y=2, y=1
ответ: (4; 1)