Пусть V - скорость первого бегуна, S - второго, а К - длина круга. Запишем условие задачи в алгебраическом виде:
V/4 + 1 = K
S/6 = K
V + 10 = S
приравняем К и получим из первых двух уравнений одно:
V/4 + 1 = S/6
Подставим вместо S -> V+10, получим:
V/4 + 1 = (V+10)/6
(V + 4)/4 = (V+10)/6
3*(V+4) - 2*(V+10) = 0
3V + 12 - 2V - 20 = 0
V = 8
(для проверки можете посчитать также S = V + 10 = 8 + 10 = 18; а также K = S/6 = 18/6 = 3. Если V = 8, то K = V/4 + 1 = 2+1 = 3, то есть задача решена верна, но условие от нас проверки и всех этих расчетов не требует).
График построй в каком-нибудь построителе графиков онлайн, лень рисовать. Чтобы была одна общая точка нужно, чтобы уравнение (x+1)(x^2-5x+4)/x-4 = с имело ровно один корень. Я подозреваю, кстати, что ты ошиблась: в условии должна быть функция (x+1)(x^2-5x+4)/(x-4). Это важное отличие. Уравнение соответственно (x+1)(x^2-5x+4)/(x-4) = с Заметь, что: x^2-5x+4 = (х-4)(х-1) А значит при х не равном 4: (x+1)(x^2-5x+4)/(x-4) = (х+1)(х-1) То есть нам нужно, чтобы (х+1)(х-1) = с имело единственное решение. x^2-1 = c x^2=1+c Когда имеет единственное решение? Когда (1+c) = 0. То есть с = -1.
P.S. Когда график будешь строить обрати внимание, что точка (4; 15)
8 км/ч
Объяснение:
Пусть V - скорость первого бегуна, S - второго, а К - длина круга. Запишем условие задачи в алгебраическом виде:
V/4 + 1 = K
S/6 = K
V + 10 = S
приравняем К и получим из первых двух уравнений одно:
V/4 + 1 = S/6
Подставим вместо S -> V+10, получим:
V/4 + 1 = (V+10)/6
(V + 4)/4 = (V+10)/6
3*(V+4) - 2*(V+10) = 0
3V + 12 - 2V - 20 = 0
V = 8
(для проверки можете посчитать также S = V + 10 = 8 + 10 = 18; а также K = S/6 = 18/6 = 3. Если V = 8, то K = V/4 + 1 = 2+1 = 3, то есть задача решена верна, но условие от нас проверки и всех этих расчетов не требует).
Чтобы была одна общая точка нужно, чтобы уравнение (x+1)(x^2-5x+4)/x-4 = с имело ровно один корень.
Я подозреваю, кстати, что ты ошиблась: в условии должна быть функция (x+1)(x^2-5x+4)/(x-4). Это важное отличие.
Уравнение соответственно (x+1)(x^2-5x+4)/(x-4) = с
Заметь, что:
x^2-5x+4 = (х-4)(х-1)
А значит при х не равном 4:
(x+1)(x^2-5x+4)/(x-4) = (х+1)(х-1)
То есть нам нужно, чтобы (х+1)(х-1) = с имело единственное решение.
x^2-1 = c
x^2=1+c
Когда имеет единственное решение? Когда (1+c) = 0.
То есть с = -1.
P.S.
Когда график будешь строить обрати внимание, что точка (4; 15)