найдите сумму бесконечной геометрической прогрессии -40; 20; -10; ... член геометрической прогрессии определяется по формуле вn=в1*q^(n-1),или в2=в1*q^(2-1)= в1*q¹=в1q т.к. в1=-40; в2=20, по условию задачи, можно найти q, подставляем данные и находим 20=-40*q, q=-½ т.к не дано найти сумму ограниченного количества членов , то можно рассуждать так, суммы n членов определяется по формуле Sn=в1*(1-q^n)/(1-q), т.к q=-½, тогда q^n=(-½)^n≈0 при n→∞, (-0,5;0,3;-0,25, т.е при увеличении n, q≈0, и этим членом можно пренебречь), тогда, подставив данные получим Sn=-40*1/(1-(-½))=-40*2/3=-26⅔
b6=0.81*(-q)^5
2.b1=6; q=2. Найти S(7)
S(7)=6(2^7-1)/(2-1)=762
3. b1=-40; b2=-20; b3=-10. Найти сумму n членов бесконечной прогрессии.
q=-20/-40=-10/-20=0.5
S(n)=-40(0.5^n-1)/(0.5-1)
S(n)=(80*0.5^n)-80
4. b2=1.2; b4=4.8. Найти S(8)
(b3)^2=1.2*4.8=5.76
b3=√5.76=2.4
q=4.8/2.4=2.4/1.2=2
b1=1.2/2=0.6
S(8)=0.6(2^8-1)/(2-1)
S(8)=153
5. Представить в виде обыкновенной дроби бесконечную периодическую дробь.
a) 0.(153)
k=3
m=0
a=153
b=0
0+(153-0)/999=153/999=51/333=17/111
b) 0.3(2)
k=1
m=1
a=32
b=3
0+((32-3)/90)=29/90
найдите сумму бесконечной геометрической прогрессии -40; 20; -10; ...
член геометрической прогрессии определяется по формуле
вn=в1*q^(n-1),или в2=в1*q^(2-1)= в1*q¹=в1q
т.к. в1=-40; в2=20, по условию задачи, можно найти q, подставляем данные и находим
20=-40*q, q=-½
т.к не дано найти сумму ограниченного количества членов , то можно рассуждать так, суммы n членов определяется по формуле
Sn=в1*(1-q^n)/(1-q), т.к q=-½, тогда q^n=(-½)^n≈0 при n→∞, (-0,5;0,3;-0,25, т.е при увеличении n, q≈0, и этим членом можно пренебречь), тогда, подставив данные получим
Sn=-40*1/(1-(-½))=-40*2/3=-26⅔