Итак, чтобы уравнение имело смысл, а должно быть больше нуля. По свойству модуля: 1)x^2-5ax=15a 2)x^2-5ax=-15a Решим первое уравнение: x^2-5ax-15a=0 Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля: D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0 +(-2,4)-(0)+
a e (0; + беск.) Нас не устраивает промежуток a e (-беск.; -2,4) 2)x^2-5ax=-15a x^2-5ax+15a=0 D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0 +(0)-(2,4)+ a e (2,4; + беск.) Нас не устраивает промежуток a e (-беск.;0) Объединяя два решения, получаем: ответ: a e (2,4; + беск.)
Пусть скорость реки (она же скорость плота) равна х км/ч. Тогда 36/(12-х) время в пути лодки (лодка плыла против течения реки) 36/х время в пути плота (плот плыл по течению реки) Уравнение: 36/х - 36/(12-х) =8 36/х - 36/(12-х) -8 = 0 Приводим к общему знаменателю (12-х)*х , получаем в числителе: 36(12-х)-36х-8(12х-х²)=0 При х не равном 12 и 0 получаем: 432-36х-36х-96х+8х²=0 8х²-168х+432=0 D=14400 х=3 - корень уравнения х=18 - не является корнем (т.к. 12-18= - 6 км/ч - не может быть)
По свойству модуля:
1)x^2-5ax=15a
2)x^2-5ax=-15a
Решим первое уравнение:
x^2-5ax-15a=0
Чтобы квадратное уравнение имело два корня, D(дискриминант) должен быть больше нуля:
D=(-5a)^2-4*(-15a)=25a^2+60a=5a(5a+12)>0
+(-2,4)-(0)+
a e (0; + беск.)
Нас не устраивает промежуток a e (-беск.; -2,4)
2)x^2-5ax=-15a
x^2-5ax+15a=0
D=(-5a)^2-4*15a=25a^2-60a=5a(5a-12)>0
+(0)-(2,4)+
a e (2,4; + беск.)
Нас не устраивает промежуток a e (-беск.;0)
Объединяя два решения, получаем:
ответ: a e (2,4; + беск.)
Тогда 36/(12-х) время в пути лодки (лодка плыла против течения реки)
36/х время в пути плота (плот плыл по течению реки)
Уравнение:
36/х - 36/(12-х) =8
36/х - 36/(12-х) -8 = 0
Приводим к общему знаменателю (12-х)*х , получаем в числителе:
36(12-х)-36х-8(12х-х²)=0
При х не равном 12 и 0 получаем:
432-36х-36х-96х+8х²=0
8х²-168х+432=0
D=14400
х=3 - корень уравнения
х=18 - не является корнем (т.к. 12-18= - 6 км/ч - не может быть)
ответ. скорость плота 3 км/ч