Пусть n – первое число, тогда второе n+1 ( т. к. по условию три последовательных числа) , третье n+2. сумма квадратов равна 2030, т. е. n²+(n+1)²+(n+2)²=2030 раскрываем скобки n²+ n²+2n+1+ n²+4n+4=2030 n²+ n²+2n+1+ n²+4n+4-2030=0 приводим подобные 3 n²+6n-2025=0 вынесем общий множитель 3, для простоты расчета 3 (n²+2n-675)=0 или n²+2n-675=0 дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле д=в²-4ас=2²-4*1*(-675)=4+2700=2704 корни квадратного уравнения определим по формуле n₁=-в+√д/2а=-2+√2704/2*1=-2+52/2=50/2=25 n2=-в+√д/2а=-2-√2704/2*1=-2-52/2=-54/2=-27 натуральное число это числа используемые для счета, следовательно подходит только один корень. соответственно, первое число равно 25, второе 26, третье 27
ответ
Соотношение параметров квадрата
Приведём формулы периметра Р и площади S квадрата через длину стороны а.
периметр квадрата Р равен учетверённому размеру его стороны а: Р = 4 * а;
площадь квадрата S равна квадрату его стороны а: S = a²;
периметр и площадь квадрата связаны между собой. так как в их формулах общий параметр - сторона квадрата: S = P² / 16.
Для понятного объяснения задачи увеличим по заданию его сторону в 3 раза.Тогда новая сторона квадрата станет а1 = 3 * а.
Вычисление увеличения периметра и площади квадрата
Чтобы узнать, как при этом изменились периметр и площадь квадрата, подставим в формулы Р и S вместо "а" новое значение стороны "а1". Тогда:
Р1 = 4 * а1 = 4 * (3 * а ) = 12 * а;
S1 = а1² = (3 * а)² = 9 * а².
После того, как выразили новый периметр Р1 и площадь S1 через начальное значение стороны "а", можно ответить на вопрос задания:
для вычислений используем написанные выше формулы для площади S и периметра P;
чтобы узнать, во сколько раз увеличится периметр квадр
чтобы узнать, во сколько раз увеличится площадь квадрата, нужно разделить S1 на S.
Согласно выше сказанного, ответим на вопросы задания:
во сколько раз увеличился периметр квадрата, для чего разделим (Р1 : Р) = (12 * а) : (4 * а) = 3 (раза);
во сколько раз увеличится площадь квадрата, для чего разделим (S1 : S) = (9 * а²) : (а²) = 9 (раз).
заметим, что если периметр квадрата увеличился в 3 раза, как и сторона квадрата, то площадь, увеличивается в (3)² = 9 раз.
ответ: периметр увеличится в 3 раза, площадь увеличится в 9 раз.