Пусть производительность первой группы это Х, производительность второй группы это Y.
Тогда "Одна группа виноградарей работала 4 ч., а другая — 6 ч. Выяснилось, что обе группы собрали одинаковое количество винограда" запишем как:
4 * X = 6 * Y
Фраза "Определи, сколько центнеров винограда убрала первая группа виноградарей за 4 ч., если известно, что каждый час она убирала на 16 ц больше второй группы" дает нам второе уравнение:
X - 16 = Y.
А найти нам надо 4 *X, то есть "сколько центнеров винограда убрала первая группа виноградарей за 4 ч."
ответ: 32 ц
Объяснение:
Перепишем текст задачи в алгебраическом виде.
Пусть производительность первой группы это Х, производительность второй группы это Y.
Тогда "Одна группа виноградарей работала 4 ч., а другая — 6 ч. Выяснилось, что обе группы собрали одинаковое количество винограда" запишем как:
4 * X = 6 * Y
Фраза "Определи, сколько центнеров винограда убрала первая группа виноградарей за 4 ч., если известно, что каждый час она убирала на 16 ц больше второй группы" дает нам второе уравнение:
X - 16 = Y.
А найти нам надо 4 *X, то есть "сколько центнеров винограда убрала первая группа виноградарей за 4 ч."
Решаем систему уравнений методом подстановки:
4 * Х = 6 * (X - 16)
6 * X - 4 * X = 16
2 * X = 16
X = 8
=> 4 * X = 4 * 8 = 32 ц
1. Построить график. Находим вершину параболы. Приводим к виду:
y = x² - 6*x +5 = (x² - 2*x*3 + 3²)-9 +5 = (x-3)² - 4
Получили уравнение ОБЫЧНОЙ ПАРАБОЛЫ ИКС КВАДРАТ, но с вершиной в точке А(3;-4)
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
Рисунок с графиком к задаче в приложении.
ответы на вопросы:
1) У(0,5) = 1/4 - 6*0,5 +5 = 2,25 - ответ
2) Y(x) = -1
Решаем квадратное уравнение
x² - 6x - 6 = 0 и получаем: х1 ≈ 1,3 и х2 ≈ 4,7. (с ГРАФИКА).
Интервалы знакопостоянства.
Y>0 - X∈(-∞;-1]∪[5;+∞) - положительна.
Y<0 - X∈[-1;5] - отрицательна.
Внимание - важно. Функция непрерывная - квадратные скобки в написании интервалов у нулей функции.
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
4. Возрастает после минимума - Х∈[3; +∞)
и убывает при Х∈(-∞;3]
Объяснение:
незачто!