Решением системы неравенств называют такие значения переменной, которые являются решениями сразу всех неравенств, входящих в эту систему. Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет. Чтобы решить систему неравенств с одной переменной, надо: 1) отдельно решить каждое неравенство; 2) найти пересечение найденных решений. Это пересечение и является множеством решений системы неравенств. Пример: Решите систему неравенств |4x + 4 ≥ 0 |6 – 4x ≥ 0 Решение: |4x ≥ –4 |–4x ≥ –6 ↓ |x ≥ –4 : 4 |x ≥ –6 : (–4) ↓ |x ≥ –1 |x ≥ 1,5 ответ: [–1; 1,5]
С2+6с-40=0 Выделим в левой части полный квадрат. Для этого запишем выражение с2+6с в следующем виде: с2+6с=с2+2*3*с. В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате. Преобразуем теперь левую часть уравнения с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем: с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0 Таким образом, данное уравнение можно записать так: (с + 3)в квадрате - 49 =0, (х + 3)в квадрате = 49. Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10
Решить систему неравенств – значит найти решения для всей системы, либо доказать, что у данной системы решений нет.
Чтобы решить систему неравенств с одной переменной, надо:
1) отдельно решить каждое неравенство;
2) найти пересечение найденных решений.
Это пересечение и является множеством решений системы неравенств.
Пример: Решите систему неравенств
|4x + 4 ≥ 0
|6 – 4x ≥ 0
Решение:
|4x ≥ –4
|–4x ≥ –6
↓
|x ≥ –4 : 4
|x ≥ –6 : (–4)
↓
|x ≥ –1
|x ≥ 1,5
ответ: [–1; 1,5]
Выделим в левой части полный квадрат.
Для этого запишем выражение с2+6с в следующем виде:
с2+6с=с2+2*3*с.
В полученном выражении первое слагаемое - квадрат числа с, а второе - удвоенное произведение с на 3. По этому чтобы получить полный квадрат, нужно прибавить 3в квадрате, так как
с2 + 2• с • 3 + 3в квадрате = (с + 3)в квадрате.
Преобразуем теперь левую часть уравнения
с2 + 6х - 40 = 0,прибавляя к ней и вычитая 3 в квадрате. Имеем:
с2 + 6с - 40 = с2 + 2• с • 3 + 3в квадрате - 3в квадрате - 40 = (с + 3)в квадрате - 9 - 40 = (с + 3)в квадрате - 49=0
Таким образом, данное уравнение можно записать так:
(с + 3)в квадрате - 49 =0,
(х + 3)в квадрате = 49.
Следовательно, х + 3 - 7 = 0, х1 = -4, или х + 3 = -7, х2 = -10