ОТВЕТЬЕ НУЖН.
4. Вычислите: 16,94 - 16, 9.3,7 – 16, 9×3,2.
A) 169; В) 1,69; С) 16,9; D) -1,69.
5. Разложите на множители:
ax + bx - Зау - 3by.
A) (a+b)(x+3y); В) (a - b)(x+3y);
C) (a – b)(х – 3у); D) (a+b)(x-3y).
6. Разложите на множители: 7а(5а – 3b) — 10а + 6b.
А) (5а + 3b) (7а - 2); В) (3b – 5а)(7а + 2);
C) (5а – 3b) (7а – 2); D) (5а - 3b)(7а +
7. Решите уравнение: (3х + 2)? - (3x-4)2 = 132.
А) 4; В) 3; C) -5; D-4.
В решении.
Объяснение:
Дана функция у= -х² - 4х + 4;
a) координаты вершин параболы;
1) Найти х₀:
Формула: х₀ = -b/2a;
у= -х² - 4х + 4;
х₀ = 4/-2
х₀ = -2;
2) Найти у₀:
у= -х² - 4х + 4;
у₀ = -(2²) - 4*(-2) + 4 = -4 + 8 + 4 = 8
у₀ = 8;
b) ось симметрии параболы;
Ось симметрии Х = х₀
Х = -2;
c) точки пересечения параболы с осью Ох;
Точки пересечения параболы с осью Ох называются нулями функции (у в этих точках равен нулю).
Приравнять уравнение функции к нулю и решить квадратное уравнение:
-х² - 4х + 4 = 0/-1
х² + 4х - 4 = 0
D=b²-4ac = 16 + 16 = 32 √D=√16*2 = 4√2
х₁=(-b-√D)/2a
х₁=(-4-4√2)/2
х₁= -2 - 2√2 ≈ -4,8;
х₂=(-b+√D)/2a
х₂=(-4+4√2)/2
х₂= -2 + 2√2 ≈ 0,8;
х₁= -2 - 2√2; х₂= -2 + 2√2 - нули функции.
d) точки пересечения параболы с осью Оу;
Любой график пересекает ось Оу при х = 0:
у= -х² - 4х + 4;
у = -0² - 4*0 + 4
у = 4;
Парабола пересекает ось Оу при у = 4;
e) постройте график функции;
Уравнение квадратичной функции, график - парабола, ветви направлены вниз, пересекают ось Ох в точках х₁= -2 - 2√2 ≈ -4,8 и
х₂= -2 + 2√2 ≈ 0,8.
Придать значения х, подставить в уравнение, вычислить у, записать в таблицу.
у= -х² - 4х + 4;
Таблица:
х -6 -5 -4 -3 -2 -1 0 1 2
у -8 -1 4 7 8 7 4 -1 -8
По вычисленным точкам построить параболу.
136/(х-2) - 130/х = 4
приводим к общему знаменателю х(х-2) и отбрасываем его, заметив, что х≠0 и х≠2, получаем:
136х-130(х-2)=4х(х-2)
136х-130х+260-4х2+8х=0
-4х2 +14х +260 =0 |:(-2)
2х2 -7х -130 =0
Д=19+8*130=1089
х(1)=(7+33) / 4 =10 (л/мин) воды пропускает через себя вторая труба.
х(2)= (7-33) / 4 = -6,5 <0 не подходит под условие задачи