Получатся два прямоугольных треугольника, в каждом из которых данные отрезки d и m будут являться гипотенузами, их проекции d₁ и m₁ катетами, а расстояние между параллельными плоскостями h катет По условию d + m = 40 Пусть х - длина проекции d₁ (40 - m) - длина проекции m₁ Применяем теорему Пифагора для первого треугольника d² - d₁² = h² и для второго m² - m₁² = h² Правые части равны, приравняв левые части, получим уравнение 13² - x² = 37² - (40 - x)² 169 - x² = 1369 - 1600 + 80x - x² 80x = 400 x = 400 : 80 х = 5 см - длина первой проекции 40 - 5 = 35 см - длина второй проекции Ищем разность 35 - 5 = 30 см ответ: 30 см
1) При x≤-1 |1-x|=1-x, |x+1|=-x-1, y=1-x-x-1=-2x. На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2. Среди них целыми являются y=2; 3; 4. 2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2. На интервале (-1;1) y принимает одно значение - y=2. 3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x. На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6. Среди них целыми являются y=2; 3; 4; 5; 6.
Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6. Их сумма равна (2+6)/2*5=20.
По условию d + m = 40
Пусть
х - длина проекции d₁
(40 - m) - длина проекции m₁
Применяем теорему Пифагора для первого треугольника
d² - d₁² = h²
и для второго
m² - m₁² = h²
Правые части равны, приравняв левые части, получим уравнение
13² - x² = 37² - (40 - x)²
169 - x² = 1369 - 1600 + 80x - x²
80x = 400
x = 400 : 80
х = 5 см - длина первой проекции
40 - 5 = 35 см - длина второй проекции
Ищем разность
35 - 5 = 30 см
ответ: 30 см
На отрезке [-2;-1] y принимает значения от y=-2*-2=4 до y=-2*-1=2.
Среди них целыми являются y=2; 3; 4.
2) При -1<x<1 |1-x|=1-x, |x+1|=x+1, y=1-x+x+1=2.
На интервале (-1;1) y принимает одно значение - y=2.
3) При x≥1 |1-x|=x-1, |x+1|=x+1, y=x-1+x+1=2x.
На отрезке [1;3] y принимает значения от y=2*1=2 до y=2*3=6.
Среди них целыми являются y=2; 3; 4; 5; 6.
Итого, целые значения, которые принимает y на отрезке x∈[-2:3] - 2;3;4;5;6.
Их сумма равна (2+6)/2*5=20.