Если сумма трех чисел делится на 6, то эта сумма - число четное. Здесь или все слагаемые - четные числа, или одно слагаемое - четное число, а два других - нечетные. В обоих случаях кубы этих чисел будут или все четные, или одно четное и два нечетных, что в сумме даст четное число. Остается доказать делимость на 3. Вариант, когда все слагаемые кратны 3 пояснений не требует. Рассмотрим другие варианты слагаемых 1. (3а+1) + (3в+1) + (3с-2) 2. 3а + (3в-1) + (3с+1) Сумма слагаемых кратна 3, т. к. свободный член = 0. Возводим в куб 27a^3 + 27a^2 + 9a + 1 + 27в^3 + 27в^2 + 9в + 1 + 27c^3 + 27c^^2 + 9c - 8 Все члены, кроме свободных, кратны 3. СВободные члены в сумме 1 + 1 - 8 = -6 дают число тоже кратное 3. Значит сумма кубов чисел кратна 3, а следовательно и 6. Аналогично доказывается другой вариант - сумма свободных членов будет кратна 3 или равна 0.
1(б) x^2 -6x-7=0
D1=(-3)^2-1*(-7)=16 => корень из D1=4
x1=3+4=7 x2=3-4=-1
x^2-9x+14=0
D=(-9)^2-4*1*14=25 => корень из D=5
x1=9+5/2=7 x2=9-5/2=2
Записываем дробь с полученными корнями.
(x-7)(x+1)/(x-7)(x-2)=x+1/x-2
2(б) 3x^2-16x+5=0
D1=(-8)^2-3*5=49 => корень из D1=7
x1=8+7/3=5 x2=8-7/3=1/3
Нижнюю часть сократим на x, но будем помнить, что за этим x скрывается ещё один корень - 0.
x^2-4x-5=0
D1=(-2)^2-1*(-5)=9 => корень из D1=3
x1=2+3=5 x2=2-3=-1 x3=0
Подставляем.
(x-5)(x-1/3)/(x-5)(x+1)x=x-1/3/x(x+1)
Остается доказать делимость на 3. Вариант, когда все слагаемые кратны 3 пояснений не требует. Рассмотрим другие варианты слагаемых
1. (3а+1) + (3в+1) + (3с-2)
2. 3а + (3в-1) + (3с+1)
Сумма слагаемых кратна 3, т. к. свободный член = 0. Возводим в куб
27a^3 + 27a^2 + 9a + 1 + 27в^3 + 27в^2 + 9в + 1 + 27c^3 + 27c^^2 + 9c - 8
Все члены, кроме свободных, кратны 3. СВободные члены в сумме
1 + 1 - 8 = -6
дают число тоже кратное 3.
Значит сумма кубов чисел кратна 3, а следовательно и 6.
Аналогично доказывается другой вариант - сумма свободных членов будет кратна 3 или равна 0.