Объём работы положим равным единице, скорость (производительность) первого равна v1, второго v2. Условие про разницу в один день: (1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2: 6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
(1/v1) + 1 = 1/v2. Условие про совместную работу: (v1+v2)*1=5/6. Решаем эту систему. Из второго уравнения выражаем v1=(5/6)-v2 и подставляем в первое уравнение. После упрощений получаем квадратное уравнение относительно v2:
6(v2)^2 -17v2+5=0, решаем его стандартно и получаем два корня: v2=2,5 или второй корень v2=1/3. Теперь для каждого из этих корней надо найти ему пару - то есть скорость первого трактора. Используем формулу (была написана выше) v1=(5/6)-v2 и получаем в первом случае v1=-5/3 - не подходит, так как отрицательное число (получается, что первый трактор не распахивает поле, а запахивает его обратно), а для второго корня (v2=1/3) получаем v1=1/2. Таким образом, время второго равно 1/v2=3 дня. Проверка: в исходное условие (v1+v2)*1=5/6 подставляем v1 и v2 и получаем верное равенство.
ОДЗ: 21 + 4x - x² > 0
21 + 4x - x² ≠ 1
7 - x > 0
x + 3 > 0
x + 3 ≠ 1
21 + 4x - x² > 0
x² - 4x - 21 < 0
x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.
x² - 4x - 21 < 0
x ∈ (-3; 7)
21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
7 - x > 0
x < 7
x + 3 > 0
x > -3
x + 3 ≠ 1
x ≠ -2
Окончательно, ОДЗ: x ∈ (-3; ) U (; -2) U (-2; ) U (; 7).
Решаем само неравенство:
Замена:
t ≠ 1
t ≠ -1
Делаем обратную замену:
Учитывая ОДЗ, окончательный ответ: x ∈ (-3; ) U (; -2) U (-2; 2) U (2; ) U (; 7).