11п/9 = п+(2п/9), п<11п/9, 11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина. т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0. 3,14<п<3,15. 3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5, 5<6,28=2*3,14<2п<2*3,15. (3п/2)<5<2п. Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0. (3п/2)=1,5п<1,6п<2п. Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0. ответ. в).
S(1)=1, S(2)=1+3=4, S(3)=1+3+5=9, S(4)=1+3+5+7=16, S(5)=….=25,
Замечаем, что сумма первых n нечётных чисел натурального ряда равна n2 т.е. S(n)=n2. Докажем это м.м.и.
1) для n =1 формула верна.
2) предположим, что она верна для какого-нибудь натурального n=k , т.е. S(k)= k2.
Докажем , что тогда она будет верна и для n=k+1, т.е. S(k+1)=(k+1)2
S(k+1)=1+3+5+…+(2k-1)+(2k+1)=S(k)+(2k+1)=k2+2k+1=(k+1)2.
Следовательно, формула верна для всех натуральных значений n , т.е. S(n)=n2
п<11п/9,
11п/9 < (3п/2), <=> 11/9<3/2 <=> 11*2 < 3*9 <=> 22< 27, истина.
т.о. 11п/9 принадлежит третьей четверти, в которой синус отрицателен, т.е. sin(11п/9) < 0.
3,14<п<3,15.
3,14*(3/2)<(3п/2)<3,15*(3/2)=4,725<5,
5<6,28=2*3,14<2п<2*3,15.
(3п/2)<5<2п.
Угол в 5 (радиан) принадлежит четвертой четверти, в которой косинус положителен, поэтому cos(5)>0.
(3п/2)=1,5п<1,6п<2п.
Угол 1,6п принадлежит четвертой четверти, в которой tg отрицателен, т.е. tg(1,6п) <0.
ответ. в).