Периметр ромба дорівнює 8 см а гострий кут дорівнює 60.точка Р віддалена від.кожної сторони рлмба на 1 см. Знайти відстань від точки Р до площини цього ромба
1) Известно, что сторона квадрата AB параллельна оси ординат, значит, абсцисса точки В равна -2.
2) Известно также, что начало координат лежит внутри квадрата, значит, точка В лежит ниже оси Ох на расстоянии равном 7-3=4. Следовательно, можно записать координаты точки В(-2;-4).
3) Находим координаты точки С. Её ордината совпадает с ординатой точки В и равна -4. Т.к. АВСД - квадрат, то точка С лежит на прямой, параллельной оси Ох, на расстоянии равном 7-2=5 от оси Оу. Следовательно, её координаты С(5;-4).
4) Осталось записать координаты точки D. Её абсцисса совпадает с абсциссой точки С, а ордината совпадает с ординатой точки А. Значит, D(5;3)
Обозначим катеты прямоугольного треугольника за (а) и (b), тогда согласно условия задачи:
а+b=14 (см)- первое уравнение
Площадь прямоугольного треугольника находится по формуле:
(а*b)/2
По условию задачи:
а*b/2 =24 см²-второе уравнение
Поучилась система уравнений:
a+b=14
a*b/2=24
Из первого уравнения найдём значение (а) и подставим во второе уравнение:
а=14-b
(14-b)*b/2=24
14b-b²=48
b2-14b+48=0 -это простое приведённое квадратное уравнение, решаеи без дискриминанта:
b1,2=7+-√(49-48) =7+-√1=7+-1
b1=7+1=8
b2=7-1=6
Получились два значения, они оба подходят к условию задачи:
а1=14-8=6
а2-14-6=8
ответ: 6см
Объяснение:
Вершины квадрата: В(-2;-4), С(5;-4), D(5;3)
Объяснение:
А(-2;3)
а=7
1) Известно, что сторона квадрата AB параллельна оси ординат, значит, абсцисса точки В равна -2.
2) Известно также, что начало координат лежит внутри квадрата, значит, точка В лежит ниже оси Ох на расстоянии равном 7-3=4. Следовательно, можно записать координаты точки В(-2;-4).
3) Находим координаты точки С. Её ордината совпадает с ординатой точки В и равна -4. Т.к. АВСД - квадрат, то точка С лежит на прямой, параллельной оси Ох, на расстоянии равном 7-2=5 от оси Оу. Следовательно, её координаты С(5;-4).
4) Осталось записать координаты точки D. Её абсцисса совпадает с абсциссой точки С, а ордината совпадает с ординатой точки А. Значит, D(5;3)