Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.
Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:
1/х + 1/(х+7) = 1/12 | ·12·x·(x+7)
12·(x+7) + 12·x = x·(x+7)
12·x+84+12·x=х²+7·x
х²–17·x–84=0
D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²
х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего
Мне кажется, что в условии задачи ошибка. Попытаюсь уточнить условие (дайте знать, правильно ли я понял):
Есть 4 карточки с надписями: делится на 7, простое, нечетное и больше 100. На другой стороне карточек написаны числа 2,5,7,12. Для любой карточки число, написанное на ней, не обладает свойством, написанным на ее обороте. Какое число написано на карточке с надписью делится на 7?
Записываем подходящих кандидатов для каждой карточки:
1) делится на 7: 2, 5, 12
2) простое: 12
3) нечетное: 2, 12
4) больше 100: 2, 5, 7, 12
Для 2-й карточки имеется единственный кандидат: 12. Следовательно, для 3-й карточки имеем: 3) нечетное: 2 (исключаем 12, записанное на 2-й карточке). На 1-й карточке остается число 5 (исключаем 2 и 12). На 4-й карточке остается число 7 (исключаем 2, 5 и 12, записанные на других карточках).
ответ: На обратной стороне карточки с надписью "делится на 7" написано число 5.
I рабочий за 21 часов и II рабочий за 28 часов
Объяснение:
Объём задания примем за 1. Пусть I рабочий выполнить задание за х часов, и по условию, I рабочий выполнить задание на 7 часов быстрее чем II рабочий, то есть II рабочий выполнить задание за (х+7) часов.
Тогда производительность I рабочего за 1 час будет 1/х часть задания, а производительность II рабочего за 1 час будет 1/(х+7) часть задания. По условию оба рабочих работая вместе выполнили задание за 12 часов, то за 1 час они вместе выполнили 1/12 часть задания. Приравниваем данные за 1 час работы:
1/х + 1/(х+7) = 1/12 | ·12·x·(x+7)
12·(x+7) + 12·x = x·(x+7)
12·x+84+12·x=х²+7·x
х²–17·x–84=0
D= (–17)²–4·1·(–84) = 289+336 = 625 = 25²
х₁=(17+25)/2 = 42/2 = 21 часов время работы I рабочего
х₂=(17–25)/2 = –4<0 не подходит.
Тогда время работы II рабочего равна
21 + 7 = 28 часов.
Мне кажется, что в условии задачи ошибка. Попытаюсь уточнить условие (дайте знать, правильно ли я понял):
Есть 4 карточки с надписями: делится на 7, простое, нечетное и больше 100. На другой стороне карточек написаны числа 2,5,7,12. Для любой карточки число, написанное на ней, не обладает свойством, написанным на ее обороте. Какое число написано на карточке с надписью делится на 7?
Записываем подходящих кандидатов для каждой карточки:
1) делится на 7: 2, 5, 12
2) простое: 12
3) нечетное: 2, 12
4) больше 100: 2, 5, 7, 12
Для 2-й карточки имеется единственный кандидат: 12. Следовательно, для 3-й карточки имеем: 3) нечетное: 2 (исключаем 12, записанное на 2-й карточке). На 1-й карточке остается число 5 (исключаем 2 и 12). На 4-й карточке остается число 7 (исключаем 2, 5 и 12, записанные на других карточках).
ответ: На обратной стороне карточки с надписью "делится на 7" написано число 5.