1) если sin3xsin5x≥0, то |sin3xsin5x|= sin3xsin5x и уравнение принимает вид: (cos3xcos5x+sin3xsin5x) / sin2x=2cos2x. Формула cos3xcos5x+sin3xsin5x=cos(3x-5x)=cos(-2x) cos(-2x)=cos2x в силу четности косинуса. Уравнение принимает вид cos2x/sin2x=2cos2x или (cos2x/sin2x)-2 cos2x=0 cos2x(1/sin2x - 2)=0 cos2x(1-2sin2x)/sin2x=0 cos2x=0 или 1-2sin2x=0 sin2x≠0 2x=(π/2)+πk, k∈Z или sin2x=1/2 2x=(π/6)+2πn, n∈Z ; 2x=(5π/6)+2πm, m∈Z
x=(π/4)+(π/2)k, k∈Z; x=(π/12)+πn, n∈Z ; x=(5π/12)+πm, m∈Z. Так как sin3xsin5x≥0, то это означает, что угол х в первой или третьей четверти ответ.(π/4)+πk;(π/12)+πn; (5π/12)+πm; k, n, m∈Z. Промежутку [0;2π) принадлежат корни π/12; π/4; 5π/12; 13π/12; 5π/4; 17π/12. Сумма этих корней равна 54π/12.
2)если sin3xsin5x<0, то |sin3xsin5x|=- sin3xsin5x и уравнение принимает вид: (cos3xcos5x-sin3xsin5x) / sin2x=2cos2x. Формула cos3xcos5x-sin3xsin5x=cos(3x+5x)=cos(8x) Уравнение принимает вид cos8x/sin2x=2cos2x или cos8x=2 cos2xsin2x; sin2x≠0.
cos8x=sin4x; 1-2sin²4x=sin4x; 2sin²4x+sin4x-1=0; D=1-4·2·(-1)=9 sin4x=-1 или sin4x=1/2 4x=(π/2)+2πk,k∈Z или 4х=(π/6)+2πn, n∈Z; 4x=(5π/6)+2πn, n∈Z;
x=(π/8)+(π/2)k,k∈Z или х=(π/24)+(π/2)n, n∈Z; x=(5π/24)+(π/2)n, n∈Z.
sin3xsin5x<0, то угол х во второй или четвертой четверти
x=(5π/8)+πk,k∈Z или х=(13π/24)+πn, n∈Z; x=(17π/24)+πn, n∈Z.
Промежутку [0;2π) принадлежат корни 13π/24;5π/8;17π/24;37π/24;39π/24;41π/24. Сумма корней 162π/24. Сумма 1) и 2) (54π/24)+(162π/24)=216π/24=36π/4=9π g=9 О т в е т. 9+1=10
Пусть x км/ч — собственная скорость катера, тогда скорость катера по течению равна x + 2 км/ч, а скорость катера против течения равна x - 2 км/ч. На весь путь катер затратила 17/3 - 3/2 = 25/6 (часов), отсюда имеем:
(cos3xcos5x+sin3xsin5x) / sin2x=2cos2x.
Формула
cos3xcos5x+sin3xsin5x=cos(3x-5x)=cos(-2x)
cos(-2x)=cos2x в силу четности косинуса.
Уравнение принимает вид
cos2x/sin2x=2cos2x
или
(cos2x/sin2x)-2 cos2x=0
cos2x(1/sin2x - 2)=0
cos2x(1-2sin2x)/sin2x=0
cos2x=0 или 1-2sin2x=0
sin2x≠0
2x=(π/2)+πk, k∈Z или sin2x=1/2
2x=(π/6)+2πn, n∈Z ; 2x=(5π/6)+2πm, m∈Z
x=(π/4)+(π/2)k, k∈Z;
x=(π/12)+πn, n∈Z ; x=(5π/12)+πm, m∈Z.
Так как sin3xsin5x≥0, то это означает, что угол х в первой или третьей четверти
ответ.(π/4)+πk;(π/12)+πn; (5π/12)+πm; k, n, m∈Z.
Промежутку [0;2π) принадлежат корни
π/12; π/4; 5π/12; 13π/12; 5π/4; 17π/12.
Сумма этих корней равна 54π/12.
2)если sin3xsin5x<0, то |sin3xsin5x|=- sin3xsin5x и уравнение принимает вид:
(cos3xcos5x-sin3xsin5x) / sin2x=2cos2x.
Формула
cos3xcos5x-sin3xsin5x=cos(3x+5x)=cos(8x)
Уравнение принимает вид
cos8x/sin2x=2cos2x
или
cos8x=2 cos2xsin2x;
sin2x≠0.
cos8x=sin4x;
1-2sin²4x=sin4x;
2sin²4x+sin4x-1=0;
D=1-4·2·(-1)=9
sin4x=-1 или sin4x=1/2
4x=(π/2)+2πk,k∈Z или
4х=(π/6)+2πn, n∈Z; 4x=(5π/6)+2πn, n∈Z;
x=(π/8)+(π/2)k,k∈Z или
х=(π/24)+(π/2)n, n∈Z; x=(5π/24)+(π/2)n, n∈Z.
sin3xsin5x<0, то угол х во второй или четвертой четверти
x=(5π/8)+πk,k∈Z или
х=(13π/24)+πn, n∈Z; x=(17π/24)+πn, n∈Z.
Промежутку [0;2π) принадлежат корни
13π/24;5π/8;17π/24;37π/24;39π/24;41π/24.
Сумма корней
162π/24.
Сумма 1) и 2) (54π/24)+(162π/24)=216π/24=36π/4=9π
g=9
О т в е т. 9+1=10
Пусть x км/ч — собственная скорость катера, тогда скорость катера по течению равна x + 2 км/ч, а скорость катера против течения равна x - 2 км/ч. На весь путь катер затратила 17/3 - 3/2 = 25/6 (часов), отсюда имеем:
20/(x+2) + 20/(x - 2) = 25/6 ⇔ (20x - 40 + 20x + 40)/((x+2)(x-2)) = 25/6 ⇔
⇔ 40x/(x² - 4) = 25/6 ⇔
⇔ 240x = 25x² - 100 ⇔ 25x² - 240x - 100 = 0 | : 5, x > 0. ⇒ 5x² - 48 - 20 = 0
D = 2304 + 400 = 2704 = 52²
x₁ = ( 48 + 52)/10 = 10 км/ч
x₂ = (48 - 52)/10 = - 0,4 км/ч - не удовлетворяет условию x > 0.
⇒ собственная скорость катера равна 10 км/ч.
ответ: 10
Отметь моё решение как лучшее