В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
annuwka1
annuwka1
15.12.2020 02:56 •  Алгебра

по алгебре решить систему неравенств и 39 пример)

Показать ответ
Ответ:

x= - 11 точка локального минимума функции

Объяснение:

Дана функция

\tt \displaystyle y=(x+11)^2 \cdot e^{3-x}

1) Вычислим производную от функции:

\tt \displaystyle y'=((x+11)^2 \cdot e^{3-x})'=(x+11)^2 )'\cdot e^{3-x}+(x+11)^2 \cdot( e^{3-x})' =

\tt \displaystyle =2 \cdot (x+11) \cdot e^{3-x}+(x+11)^2 \cdot (-1) \cdot e^{3-x} =

\tt \displaystyle =e^{3-x} \cdot (2 \cdot (x+11)-(x+11)^2) =-e^{3-x} \cdot (x^2+20\cdot x+99).

2) Находим критические точки:

\tt \displaystyle y'=0 \Leftrightarrow -e^{3-x} \cdot (x^2+20\cdot x+99)=0 \Leftrightarrow x^2+20\cdot x+99=0:

\tt \displaystyle D=20^2-4 \cdot 1 \cdot 99= 400-396=4=2^2

\tt \displaystyle x_{1}=\frac{-20-2}{2}=-11\\\\ x_{2}=\frac{-20+2}{2}=-9.

3) Определим промежутки возрастания и убывания функции. Для этого представим производную от функции в следующем виде и применим метод интервалов:

\tt \displaystyle y'=-e^{3-x} \cdot (x+11) \cdot (x+9).

Точки -11 и -9 делят ось Ох на 3 интервала: (-∞; -11), (-11; -9) и (-9; +∞).

а) Пусть x= -12∈(-∞; -11):

\tt \displaystyle y'(-12)=-e^{3-(-12)} \cdot (-12+11) \cdot (-12+9)=-e^{15} \cdot (-1) \cdot (-3)=-3\cdot e^{15}

Значит, на интервале (-∞; -11) функция убывает.

б) Пусть x= -10∈(-11; -9):

\tt \displaystyle y'(-10)=-e^{3-(-10)} \cdot (-10+11) \cdot (-10+9)=-e^{13} \cdot 1 \cdot (-1)=e^{13} 0

Значит, на интервале (-11; -9) функция возрастает.

в) Пусть x= 0∈(-9; +∞):

\tt \displaystyle y'(0)=-e^{3-0} \cdot (0+11) \cdot (0+9)=-e^{15} \cdot 11 \cdot 9=-99\cdot e^{3}

Значит, на интервале (-9; +∞) функция убывает.

4) Определим экстремумы функции:

Функция убывает на интервале (-∞; -11) и возрастает на интервале (-11; -9), то x= - 11 точка локального минимума функции.

Функция возрастает на интервале (-11; -9) и убывает  на интервале (-9; +∞), то x= - 9 точка локального максимума функции.

0,0(0 оценок)
Ответ:
ritteru
ritteru
23.03.2020 17:47

Объяснение:

Квадраты кончаются на такие цифры:

1^2=1; 2^2=4; 3^2=9; 4^2=16; 5^2=25; 6^2=36; 7^2=49; 8^2=64; 9^2=81; 10^2=100

У нас три последовательных числа.

Если первое кончается на 1, то сумма квадратов кончается на

1+4+9=14, то есть на 4, как второе число.

Чтобы сумма квадратов была нечетной, первое число должно быть четным.

Если первое кончается на 2, то сумма кончается на 4+9+16=29, то есть на 9.

Если первое кончается на 4, то сумма кончается на 16+25+36=77, то есть на 7.

Если первое кончается на 6, то сумма кончается на 36+49+64=149, то есть на 9.

Если первое кончается на 8, то сумма кончается на 64+81+100=245, то есть на 5.

Если первое кончается на 0, то сумма кончается на 0+1+4=5.

Ни при каких условиях сумма трех квадратов последовательных чисел не может кончаться на 3.

ответ: правильное второе число.

0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота