Скорость моторной лодки в стоячей воде 7 км/ч. Время, затраченное на движение лодки на 24 км по течению и на 24 км против течения равно 7 часам. Найти скорость течения реки.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
7 + х - скорость лодки по течению.
7 - х - скорость лодки против течения.
24/(7 + х) - время лодки по течению.
24/(7 - х) - время лодки против течения.
По условию задачи уравнение:
24/(7 + х) + 24/(7 - х) = 7
Умножить все части уравнения на (7 - х)(7 + х), чтобы избавиться от дробного выражения:
ВвоыоФункция arcsin(x) обозначает угол, синус которого равен х. Это можно записать математически: sin(arcsin(x))=x. Справедливо и обратное: arcsin(sin(x))=x. Функция arcsin(x) - нечетная, как и обратная ей функция sin(x). Это значит, что arcsin(-x) = - arcsin(x). Поэтому arcsin(-3/4) = -arcsin(3/4). В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора
В решении.
Объяснение:
Скорость моторной лодки в стоячей воде 7 км/ч. Время, затраченное на движение лодки на 24 км по течению и на 24 км против течения равно 7 часам. Найти скорость течения реки.
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - скорость течения реки.
7 + х - скорость лодки по течению.
7 - х - скорость лодки против течения.
24/(7 + х) - время лодки по течению.
24/(7 - х) - время лодки против течения.
По условию задачи уравнение:
24/(7 + х) + 24/(7 - х) = 7
Умножить все части уравнения на (7 - х)(7 + х), чтобы избавиться от дробного выражения:
24*(7 - х) + 24*(7 + х) = 7*(7 - х)(7 + х)
168 - 24х + 168 + 24х = 343 - 7х²
7х² = 343 - 336
7х² = 7
х² = 1
х = √1
х = 1 (км/час) - скорость течения реки.
Проверка:
24/ 8 + 24/6 = 3 + 4 = 7 (часов), верно.
Это можно записать математически: sin(arcsin(x))=x.
Справедливо и обратное: arcsin(sin(x))=x.
Функция arcsin(x) - нечетная, как и обратная ей функция sin(x).
Это значит, что arcsin(-x) = - arcsin(x).
Поэтому
arcsin(-3/4) = -arcsin(3/4).
В принципе, arcsin(3/4) - это иррациональное число, выражающее некоторый вполне конкретный угол, заданный именно таким выражением. Но если тебя не устраивает такая запись, можно найти приближенное значение при инженерного калькулятора